The relationship between Celsius \( \left({ }^{\circ} \mathrm{C}\right) \) and Fahrenheit \( \left({ }^{\circ} \mathrm{F}\right) \) degrees of measuring temperature is linear. Find a linear equation relating \( { }^{\circ} \mathrm{C} \) and \( { }^{\circ} \mathrm{F} \) if \( 0^{\circ} \mathrm{C} \) corresponds to \( 32{ }^{\circ} \mathrm{F} \) and \( 30^{\circ} \mathrm{C} \) corresponds to \( 86^{\circ} \mathrm{F} \). Use the equation to find the Celsius measure of \( 74^{\circ} \mathrm{F} \). Choose the correct equation below. \( \begin{array}{ll}\text { A. }{ }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}+32\right) & \text { B. }{ }^{\circ} \mathrm{C}=\frac{9}{5}\left({ }^{\circ} \mathrm{F}+32\right) \\ \text { C. }{ }^{\circ} \mathrm{C}=\frac{9}{5}\left({ }^{\circ} \mathrm{F}-32\right) & \text { D. }{ }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right)\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find the linear equation that relates Celsius \( \left({ }^{\circ} \mathrm{C}\right) \) and Fahrenheit \( \left({ }^{\circ} \mathrm{F}\right) \), we can use the given points \((0, 32)\) and \((30, 86)\). The slope \( m \) can be calculated as \( \frac{86 - 32}{30 - 0} = \frac{54}{30} = 1.8 \). Using point-slope form, we find the equation is \( { }^{\circ} \mathrm{C} = \frac{5}{9}({ }^{\circ} \mathrm{F} - 32) \). Thus, the correct choice is **D**. To find the Celsius equivalent of \( 74^{\circ} \mathrm{F} \), we plug in \( { }^{\circ} \mathrm{F} = 74 \) into our derived equation: \[ { }^{\circ} \mathrm{C} = \frac{5}{9}(74 - 32) = \frac{5}{9}(42) \approx 23.33{ }^{\circ} \mathrm{C}. \] So, \( 74^{\circ} \mathrm{F} \) corresponds to approximately \( 23.33^{\circ} \mathrm{C} \)!