Question
upstudy study bank question image url

1) \( \frac{x}{3 x^{2} y}+\frac{x+1}{6 x y^{2}}-\frac{3}{9 x y} \)

Ask by Hodges Wade. in Colombia
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La expresión simplificada es \( \frac{x+1}{6xy^{2}} \).

Solution

Calculate or simplify the expression \( \frac{x}{3x^2y}+\frac{x+1}{6xy^2}-\frac{3}{9xy} \). Simplify the expression by following steps: - step0: Solution: \(\frac{x}{3x^{2}y}+\frac{x+1}{6xy^{2}}-\frac{3}{9xy}\) - step1: Divide the terms: \(\frac{1}{3xy}+\frac{x+1}{6xy^{2}}-\frac{3}{9xy}\) - step2: Calculate: \(\frac{1}{3xy}+\frac{x+1}{6xy^{2}}-\frac{1}{3xy}\) - step3: Reduce fractions to a common denominator: \(\frac{2y}{3xy\times 2y}+\frac{x+1}{6xy^{2}}-\frac{2y}{3xy\times 2y}\) - step4: Multiply the numbers: \(\frac{2y}{6xy\times y}+\frac{x+1}{6xy^{2}}-\frac{2y}{3xy\times 2y}\) - step5: Multiply the numbers: \(\frac{2y}{6xy\times y}+\frac{x+1}{6xy^{2}}-\frac{2y}{6xy\times y}\) - step6: Multiply the terms: \(\frac{2y}{6xy^{2}}+\frac{x+1}{6xy^{2}}-\frac{2y}{6xy\times y}\) - step7: Multiply the terms: \(\frac{2y}{6xy^{2}}+\frac{x+1}{6xy^{2}}-\frac{2y}{6xy^{2}}\) - step8: Transform the expression: \(\frac{2y+x+1-2y}{6xy^{2}}\) - step9: Calculate: \(\frac{x+1}{6xy^{2}}\) La expresión simplificada es \( \frac{x+1}{6xy^{2}} \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the expression \( \frac{x}{3 x^{2} y}+\frac{x+1}{6 x y^{2}}-\frac{3}{9 x y} \), we first find a common denominator for all the fractions. The common denominator is \( 18 x^2 y^2 \). Now we rewrite each fraction with this common denominator: 1. For \( \frac{x}{3 x^{2} y} \): \[ \frac{x \cdot 6y}{3 x^{2} y \cdot 6y} = \frac{6xy}{18 x^{2} y^{2}} \] 2. For \( \frac{x+1}{6 x y^{2}} \): \[ \frac{(x+1) \cdot 3x^2}{6 x y^{2} \cdot 3x^2} = \frac{3x^2(x+1)}{18 x^{2} y^{2}} = \frac{3x^3 + 3x^2}{18 x^{2} y^{2}} \] 3. For \( -\frac{3}{9 x y} \): \[ -\frac{3 \cdot 2x y}{9 x y \cdot 2x y} = -\frac{6xy}{18 x^{2} y^{2}} \] Now we can combine these rewritten fractions: \[ \frac{6xy + 3x^3 + 3x^2 - 6xy}{18 x^{2} y^{2}} = \frac{3x^3 + 3x^2}{18 x^{2} y^{2}} \] Next, we can factor \( 3x^2 \) out in the numerator: \[ = \frac{3x^2(x + 1)}{18 x^{2} y^{2}} \] \[ = \frac{x + 1}{6y^{2}} \quad (x \neq 0) \] So, the simplified expression is: \[ \frac{x + 1}{6y^{2}} \quad (x \neq 0) \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy