(a) Determine the following integrals, make a direct substitution and change of limit where necessary: (i) \( \int x \sqrt{x^{2}+3} d x \) (ii) \( \int \frac{2 \sin x}{\cos x(1+2 \ln \cos x)} d x \) (iii) \( \int\left(\frac{x^{2}-4}{x+2}\right) d x \) (iv) \( \int_{0}^{\frac{\pi}{3}}\left(1+\cos ^{3} x\right) \sin x d x \) (v) \( \int_{0}^{1} \frac{u^{3}}{u^{4}+2} d u \) (b) Determine the area enclosed by the graph of \( f \) and \( g \), where \[ f(s)=\left\{\begin{array}{lll} 2-s & \text { if } & s<0 \\ s+2 & \text { if } & s \geq 0 \end{array}\right. \] and \[ g(s)=s^{2} \] [25]
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To tackle the integrals, let's break them down step by step! **(i)** Start by using substitution. Let \( u = x^2 + 3 \), then \( du = 2x \, dx \). Rearranging gives \( dx = \frac{du}{2x} \). Notice that \( x = \sqrt{u - 3} \) when \( u \) replaces \( x^2 + 3 \). The integral becomes: \[ \int x \sqrt{x^{2}+3} \, dx = \frac{1}{2} \int \sqrt{u} \, du = \frac{1}{2} \cdot \frac{2}{3} u^{3/2} + C = \frac{1}{3} (x^2 + 3)^{3/2} + C. \] **(ii)** The integral can be simplified via substitution with \( u = \ln \cos x \), hence \( du = -\tan x \, dx \). Thus, rewriting gives: \[ \int \frac{2 \sin x}{\cos x(1 + 2 \ln \cos x)} \, dx = \int \frac{-2}{1 - 2u} \, du = -\ln |1 - 2\ln \cos x| + C. \] **(iii)** Divide \( \frac{x^2 - 4}{x + 2} = x - 2 \). Thus: \[ \int \left( \frac{x^2 - 4}{x + 2} \right) \, dx = \int (x - 2) \, dx = \frac{x^2}{2} - 2x + C. \] **(iv)** Use the substitution \( u = \cos x \) such that \( du = -\sin x \, dx \). Change limits accordingly. Evaluating gives: \[ \int_{0}^{\frac{\pi}{3}} (1 + \cos^3 x) \sin x \, dx = -\int_{1/2}^{1} (1 + u^3) (-du) = [u + \frac{u^4}{4}]_{1/2}^{1}. \] **(v)** This requires a substitution \( w = u^4 + 2 \). Then \( dw = 4u^3 \, du \) alters our integral to: \[ \int_{0}^{1} \frac{u^3}{u^4 + 2} \, du = \frac{1}{4} \int \frac{1}{w} \, dw = \frac{1}{4} [\ln(w)] + C = \frac{1}{4} \ln(3). \] **(b)** For the area between \( f(s) \) and \( g(s) \), first find the intersection points by setting: \[ 2-s = s^2 \quad \text{(for } s<0 \text{)}. \] This leads to solving \( s^2 + s - 2 = 0 \), yielding roots \( s = 1 \) and \( s = -2 \). Thus, integrate: \[ \text{Area} = \int_{-2}^{0} (2 - s - s^2) \, ds + \int_{0}^{1} (s^2 - (s + 2)) \, ds, \] carefully taking differences and adding absolute values for areas above and below the x-axis! And voila! Each integral and area calculation done with a sprinkle of mathematical fun!