Question

(4) \( \int \frac{d x}{(3 x+5)^{4}} \)

Ask by Chadwick Parsons. in India
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \int \frac{dx}{(3x + 5)^4} = -\frac{1}{9(3x + 5)^3} + C \]

Solution

To evaluate the integral: \[ \int \frac{dx}{(3x + 5)^4} \] **Step 1: Substitution** Let’s make a substitution to simplify the integral. Let: \[ u = 3x + 5 \] Then, compute the differential \( du \): \[ \frac{du}{dx} = 3 \quad \Rightarrow \quad dx = \frac{du}{3} \] **Step 2: Rewrite the Integral in Terms of \( u \)** Substitute \( u \) and \( dx \) into the original integral: \[ \int \frac{dx}{(3x + 5)^4} = \int \frac{\frac{du}{3}}{u^4} = \frac{1}{3} \int u^{-4} \, du \] **Step 3: Integrate** Integrate \( u^{-4} \) with respect to \( u \): \[ \frac{1}{3} \int u^{-4} \, du = \frac{1}{3} \left( \frac{u^{-3}}{-3} \right) + C = -\frac{1}{9} u^{-3} + C \] **Step 4: Substitute Back to \( x \)** Replace \( u \) with the original expression \( 3x + 5 \): \[ -\frac{1}{9} u^{-3} + C = -\frac{1}{9(3x + 5)^3} + C \] **Final Answer:** \[ \int \frac{dx}{(3x + 5)^4} = -\frac{1}{9(3x + 5)^3} + C \] where \( C \) is the constant of integration.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the integral \( \int \frac{d x}{(3 x+5)^{4}} \), we can use the substitution method. Let \( u = 3x + 5 \), then \( du = 3dx \) or \( dx = \frac{du}{3} \). The integral transforms into: \[ \int \frac{1}{u^4} \cdot \frac{du}{3} = \frac{1}{3} \int u^{-4} \, du \] Now, integrating \( u^{-4} \) gives us: \[ \frac{1}{3} \cdot \left( -\frac{1}{3} u^{-3} \right) + C = -\frac{1}{9} u^{-3} + C \] Substituting back \( u = 3x + 5 \): \[ \int \frac{d x}{(3 x+5)^{4}} = -\frac{1}{9 (3x + 5)^{3}} + C \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy