Question
a. \( \frac{x^{2}-4 x+3}{6} \cdot \frac{2}{x-1} \)
Ask by Cox Mcdonald. in Norway
Sep 25,2024
Real Tutor Solution
Tutor-Verified Answer
Answer
\( \frac{x-3}{3} \)
Solution
Calculate or simplify the expression \( (x^{2}-4x+3)/6 * 2/(x-1) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\frac{\left(x^{2}-4x+3\right)}{6}\times 2}{\left(x-1\right)}\)
- step1: Remove the parentheses:
\(\frac{\frac{x^{2}-4x+3}{6}\times 2}{x-1}\)
- step2: Reduce the fraction:
\(\frac{\frac{x^{2}-4x+3}{3}}{x-1}\)
- step3: Multiply by the reciprocal:
\(\frac{x^{2}-4x+3}{3}\times \frac{1}{x-1}\)
- step4: Rewrite the expression:
\(\frac{\left(x-1\right)\left(x-3\right)}{3}\times \frac{1}{x-1}\)
- step5: Reduce the fraction:
\(\frac{x-3}{3}\)
La simplification de l'expression donnée est \( \frac{x-3}{3} \).
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution