Answer
**Apportionment of 70 Representatives:**
| **State** | **Population** | **Representatives** |
|--------------|-----------------|---------------------|
| **Apprecia** | 300,500 | 35 |
| **Beauti** | 200,000 | 23 |
| **Contentia**| 50,000 | 6 |
| **Dashin** | 38,000 | 4 |
| **Enjoya** | 21,500 | 2 |
| **Total** | 610,000 | 70 |
Each state is allocated representatives based on its population, ensuring a fair distribution of 70 representatives in total.
Solution
To apportion **70 representatives** among the five states based on their populations, we'll use a **standard divisor method** (similar to the Hamilton method) to ensure a fair distribution proportional to each state's population.
### **1. Calculate Total Population**
First, sum the populations of all states:
- **Apprecia:** 300,500
- **Beauti:** 200,000
- **Contentia:** 50,000
- **Dashin:** 38,000
- **Enjoya:** 21,500
**Total Population = 300,500 + 200,000 + 50,000 + 38,000 + 21,500 = 610,000**
### **2. Determine Population per Representative**
Divide the total population by the number of representatives to find the population each representative should represent:
\[
\text{Population per Representative} = \frac{610,000}{70} ≈ 8,714 \text{ people/representative}
\]
### **3. Initial Allocation**
Divide each state's population by the population per representative and take the integer part (floor) to allocate representatives initially:
- **Apprecia:** \( \frac{300,500}{8,714} ≈ 34.47 \) → **34 representatives**
- **Beauti:** \( \frac{200,000}{8,714} ≈ 22.98 \) → **22 representatives**
- **Contentia:** \( \frac{50,000}{8,714} ≈ 5.73 \) → **5 representatives**
- **Dashin:** \( \frac{38,000}{8,714} ≈ 4.36 \) → **4 representatives**
- **Enjoya:** \( \frac{21,500}{8,714} ≈ 2.47 \) → **2 representatives**
**Total Allocated Initially = 34 + 22 + 5 + 4 + 2 = 67 representatives**
### **4. Allocate Remaining Representatives**
There are **3 remaining seats** to be allocated. Assign these based on the largest fractional parts from the initial division:
- **Beauti:** 0.98
- **Contentia:** 0.73
- **Apprecia:** 0.47
- **Enjoya:** 0.47
- **Dashin:** 0.36
**Allocation Order:**
1. **Beauti** gets **1 additional representative** (highest fractional part: 0.98)
2. **Contentia** gets **1 additional representative** (next highest: 0.73)
3. **Apprecia** gets **1 additional representative** (next: 0.47)
**Final Allocation:**
- **Apprecia:** 34 + 1 = **35 representatives**
- **Beauti:** 22 + 1 = **23 representatives**
- **Contentia:** 5 + 1 = **6 representatives**
- **Dashin:** **4 representatives**
- **Enjoya:** **2 representatives**
**Total Representatives Allocated = 35 + 23 + 6 + 4 + 2 = 70 representatives**
### **Summary of Apportionment**
| **State** | **Population** | **Representatives** |
|--------------|-----------------|---------------------|
| **Apprecia** | 300,500 | 35 |
| **Beauti** | 200,000 | 23 |
| **Contentia**| 50,000 | 6 |
| **Dashin** | 38,000 | 4 |
| **Enjoya** | 21,500 | 2 |
| **Total** | 610,000 | 70 |
This allocation ensures that each state receives representatives proportional to its population while adhering to the total of 70 representatives.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution