Question
upstudy study bank question image url

\( \begin{array}{ll}\text { Colculer : } & A=\left[\left(\frac{-2}{3}\right)^{-2}+2008^{0}\right]^{-1} \\ \text { Donner récriture scientifique : } & B=0,0024 \times 10^{-6} \\ & C=\frac{a^{-11} \times\left(b^{-5} \times a^{9}\right)^{-3}}{\left(b^{-9}\right)^{2} \times a^{30}}\end{array} \)

Ask by Santiago Pope. in Morocco
Jan 16,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( A = \frac{4}{13} \), \( B = 2.4 \times 10^{-9} \), \( C = \frac{b^{33}}{a^{68}} \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

Pour commencer, calculons \( A \). La première partie de \( A \) est \( \left(\frac{-2}{3}\right)^{-2} \), qui est égal à \( \left(\frac{3}{-2}\right)^{2} = \frac{9}{4} \). Ensuite, \( 2008^{0} \) est égal à 1. Donc, \( A = \left(\frac{9}{4} + 1\right)^{-1} = \left(\frac{9}{4} + \frac{4}{4}\right)^{-1} = \left(\frac{13}{4}\right)^{-1} = \frac{4}{13} \). Maintenant, passons à la réécriture scientifique pour \( B \). Le nombre \( 0,0024 \times 10^{-6} \) peut être réécrit comme \( 2,4 \times 10^{-3} \times 10^{-6} = 2,4 \times 10^{-9} \). Enfin, pour \( C \), simplifions l'expression. On commence avec \( a^{-11} \times \left(b^{-5} \times a^{9}\right)^{-3} \), qui se réécrit comme \( a^{-11} \times b^{15} \times a^{-27} = b^{15} \times a^{-38} \). Ensuite, le dénominateur devient \( \left(b^{-9}\right)^{2} \times a^{30} = b^{-18} \times a^{30} \). Ainsi, \( C = \frac{b^{15} \times a^{-38}}{b^{-18} \times a^{30}} = b^{33} \times a^{-68} \). Voilà une version simplifiée de votre expression !

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy