Question
upstudy study bank question image url

Which of the following is NOT a violation of the refrigerant management regulations under the Clean Air Act? (A) A) Failing to evacuate refrigerant in a system to the required evacuation level. (B) B) Servicing a system that uses CFCs or HCFCs after the phaseout of those refrigerants, (C) C) Failing to evacuate refrigerant in a leaking system to at least 0 psig. (D) Adding nitrogen to a fully charged system, then calling the mixture a "leak check gas" and venting the mixture to the atmosphere.

Ask by Tyler Mejia. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Adding nitrogen to a fully charged system for leak checking without releasing refrigerants does not violate the Clean Air Act's refrigerant management regulations.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

Did you know that the Clean Air Act, originally enacted in 1970, has undergone several revisions to better protect the environment? The act aims to reduce air pollution and its harmful effects, and it specifically targets ozone-depleting substances like CFCs and HCFCs. Understanding these regulations is vital for anyone working with refrigerants, as violations can have significant legal and environmental consequences! In real-world scenarios, professionals in HVAC and refrigeration must stay updated about regulations surrounding refrigerant management. Awareness of phaseout dates and proper evacuation techniques can help prevent violations, ensuring compliance while protecting the environment. Proper training and certifications can also enhance a technician’s ability to navigate these complexities!

Related Questions

Latest Other Questions

Using the ESRT to find the Relative Humidity - Relative Humidity is the extent to which air is saturated with water vapor. - Relative humidity is the ratio of the amount of water vapor in the air to the maximum amount of water vapor that can be present could be present in the air at that temperature. - Relative Humidity is expressed as a percent (\%). - Evaporation is a cooling process. - Therefore, the wet-bulb temperature is always lower than the dry-bulb temperature EXCEPT when relative humidity is \( 100 \% \). Then the wet-bulb temperature is equal to the dry-bulb temperature. Practice Problems: 1. Dry-bulb Temperature: \( \mathbf{2 0}^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 7^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 2. Dry-bulb Temperature: \( 8^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 5^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 3. Dry-bulb Temperature: \( \mathbf{2 4}^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( \mathbf{2 2}^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 4. Dry-bulb Temperature: \( \mathbf{2 0}^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 7^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 5. Dry-bulb Temperature: \( 10^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 1^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 6. Dry-bulb Temperature: \( 6^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 5^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 7. Dry-bulb Temperature: \( 30^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 23^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Let's try some more complex examples... 8. Dry-bulb Temperature: \( -14^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( -15^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 9. Dry-bulb Temperature: \( -2^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( \qquad \) \( { }^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: 58 \% 10. Dry-bulb Temperature: \( -8^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( \qquad \) \( { }^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: 41 \%
Other United States Feb 04, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy