Question
upstudy study bank question image url

(5) \( \frac{8^{n} \cdot 6^{n-3} \cdot 9^{1-n}}{16^{n-1} \cdot 3^{-n}} \)

Ask by Schofield Best. in South Africa
Jan 27,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The simplified expression is \( \frac{2}{3} \).

Solution

To simplify the expression: \[ \frac{8^{n} \cdot 6^{n-3} \cdot 9^{1-n}}{16^{n-1} \cdot 3^{-n}} \] **Step 1: Express All Numbers in Terms of Prime Factors** - \(8 = 2^3\) - \(6 = 2 \cdot 3\) - \(9 = 3^2\) - \(16 = 2^4\) **Step 2: Rewrite Each Term Using Prime Factors** \[ \begin{align*} 8^n &= (2^3)^n = 2^{3n} \\ 6^{n-3} &= (2 \cdot 3)^{n-3} = 2^{n-3} \cdot 3^{n-3} \\ 9^{1-n} &= (3^2)^{1-n} = 3^{2(1-n)} = 3^{2 - 2n} \\ 16^{n-1} &= (2^4)^{n-1} = 2^{4(n-1)} = 2^{4n-4} \\ 3^{-n} &= 3^{-n} \end{align*} \] **Step 3: Substitute Back into the Original Expression** \[ \frac{2^{3n} \cdot 2^{n-3} \cdot 3^{n-3} \cdot 3^{2-2n}}{2^{4n-4} \cdot 3^{-n}} \] **Step 4: Combine Like Terms** - For the base \(2\): \[ 2^{3n + n - 3} = 2^{4n - 3} \] - For the base \(3\): \[ 3^{n-3 + 2 - 2n} = 3^{-n - 1} \] So, the expression becomes: \[ \frac{2^{4n-3} \cdot 3^{-n-1}}{2^{4n-4} \cdot 3^{-n}} \] **Step 5: Simplify by Subtracting Exponents** - For the base \(2\): \[ 2^{4n-3} \div 2^{4n-4} = 2^{(4n-3) - (4n-4)} = 2^{1} = 2 \] - For the base \(3\): \[ 3^{-n-1} \div 3^{-n} = 3^{(-n-1) - (-n)} = 3^{-1} = \frac{1}{3} \] **Step 6: Combine the Results** \[ 2 \times \frac{1}{3} = \frac{2}{3} \] **Final Answer:** \[ \frac{2}{3} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Let’s simplify the given expression step by step! We start with: \[ \frac{8^{n} \cdot 6^{n-3} \cdot 9^{1-n}}{16^{n-1} \cdot 3^{-n}} \] First, we know the following conversions: - \(8 = 2^3\) - \(16 = 2^4\) - \(6 = 2 \cdot 3\) - \(9 = 3^2\) - \(3^{-n} = \frac{1}{3^n}\) Now, substitute these values into the expression: \[ 8^{n} = (2^3)^{n} = 2^{3n} \] \[ 6^{n-3} = (2 \cdot 3)^{n-3} = 2^{n-3} \cdot 3^{n-3} \] \[ 9^{1-n} = (3^2)^{1-n} = 3^{2(1-n)} = 3^{2-2n} \] \[ 16^{n-1} = (2^4)^{n-1} = 2^{4(n-1)} = 2^{4n-4} \] Now substituting these back into our expression, we get: \[ \frac{2^{3n} \cdot (2^{n-3} \cdot 3^{n-3}) \cdot 3^{2-2n}}{2^{4n-4} \cdot \frac{1}{3^n}} \] This simplifies to: \[ \frac{2^{3n} \cdot 2^{n-3} \cdot 3^{n-3} \cdot 3^{2-2n} \cdot 3^n}{2^{4n-4}} \] Combine like bases in the numerator: \[ \frac{2^{3n + n - 3} \cdot 3^{n-3 + 2 - 2n + n}}{2^{4n - 4}} = \frac{2^{4n - 3} \cdot 3^{2 - n}}{2^{4n - 4}} \] Now, we simplify the fraction: \[ 2^{4n - 3 - (4n - 4)} \cdot 3^{2 - n} = 2^{4n - 3 - 4n + 4} \cdot 3^{2 - n} = 2^{1} \cdot 3^{2 - n} = 2 \cdot 3^{2 - n} \] Thus, the simplified expression is: \[ 2 \cdot 3^{2-n} \]

Latest Algebra Questions

7. Efectueaza sis scrie rezultatul sub formă de putere: \( \begin{array}{lll}\text { a) } \frac{18}{5} \cdot\left(\frac{18}{5}\right)^{2}= & \text { b) }\left(\frac{6}{5}\right)^{2} \cdot\left(\frac{6}{5}\right)^{3} \cdot \frac{6}{5}= & \text { c) }\left(\frac{19}{5}\right)^{5} \cdot\left(\frac{19}{5}\right)^{16}= \\ \begin{array}{lll}\text { d) } \frac{3}{2} \cdot\left(\frac{3}{2}\right)^{3} \cdot\left(\frac{3}{2}\right)^{0} \cdot\left(\frac{3}{2}\right)^{4}= & \text { e) }\left[\left(\frac{28}{5}\right)^{2}\right]^{3}= & \text { f) }\left[\left(\frac{5}{6}\right)^{6}\right]^{7}= \\ \text { g) }\left[\left(\frac{24}{5}\right)^{2} \cdot\left(\frac{24}{5}\right)^{3}\right]^{8}= & \text { h) }\left[\frac{5}{7} \cdot\left(\frac{5}{7}\right)^{0} \cdot\left(\frac{5}{7}\right)^{4}\right]^{5}= & \text { i) }\left(\frac{29}{10}\right)^{10}:\left(\frac{29}{10}\right)^{7}=\end{array} \\ \left.\left.\begin{array}{lll}\text { j) }\left(\frac{1}{3}\right)^{17}: \frac{1}{3}= & \left.\text { k) }\left(\frac{3}{7}\right)^{11} \cdot\left(\frac{9}{49}\right)^{3}:\left(\frac{3}{7}\right)^{15}=1\right)\end{array}\right]\left(1 \frac{1}{2}\right)^{2}\right]^{8}:\left(\frac{3}{2}\right)^{13}= \\ \text { m) }\left(\frac{9}{10}\right)^{7} \cdot\left(\frac{1}{5}\right)^{7}= & \text { n) }\left(\frac{5}{2}\right)^{10} \cdot\left(\frac{8}{5}\right)^{10}: 2^{10}= & \text { o) } 9^{3} \cdot\left(\frac{7}{10}\right)^{3}:\left(\frac{63}{10}\right)^{3}= \\ \text { p) }\left[\left(\frac{1}{5}\right)^{7}\right]^{2} \cdot 6^{14}:\left(\frac{6}{5}\right)^{14}= & \text { q) }\left(\frac{5}{2}\right)^{7}:\left(\frac{5}{2}\right)^{5}= & \end{array} \)
Algebra Romania Jan 30, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy