(5) \( \frac{8^{n} \cdot 6^{n-3} \cdot 9^{1-n}}{16^{n-1} \cdot 3^{-n}} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
Let’s simplify the given expression step by step! We start with: \[ \frac{8^{n} \cdot 6^{n-3} \cdot 9^{1-n}}{16^{n-1} \cdot 3^{-n}} \] First, we know the following conversions: - \(8 = 2^3\) - \(16 = 2^4\) - \(6 = 2 \cdot 3\) - \(9 = 3^2\) - \(3^{-n} = \frac{1}{3^n}\) Now, substitute these values into the expression: \[ 8^{n} = (2^3)^{n} = 2^{3n} \] \[ 6^{n-3} = (2 \cdot 3)^{n-3} = 2^{n-3} \cdot 3^{n-3} \] \[ 9^{1-n} = (3^2)^{1-n} = 3^{2(1-n)} = 3^{2-2n} \] \[ 16^{n-1} = (2^4)^{n-1} = 2^{4(n-1)} = 2^{4n-4} \] Now substituting these back into our expression, we get: \[ \frac{2^{3n} \cdot (2^{n-3} \cdot 3^{n-3}) \cdot 3^{2-2n}}{2^{4n-4} \cdot \frac{1}{3^n}} \] This simplifies to: \[ \frac{2^{3n} \cdot 2^{n-3} \cdot 3^{n-3} \cdot 3^{2-2n} \cdot 3^n}{2^{4n-4}} \] Combine like bases in the numerator: \[ \frac{2^{3n + n - 3} \cdot 3^{n-3 + 2 - 2n + n}}{2^{4n - 4}} = \frac{2^{4n - 3} \cdot 3^{2 - n}}{2^{4n - 4}} \] Now, we simplify the fraction: \[ 2^{4n - 3 - (4n - 4)} \cdot 3^{2 - n} = 2^{4n - 3 - 4n + 4} \cdot 3^{2 - n} = 2^{1} \cdot 3^{2 - n} = 2 \cdot 3^{2 - n} \] Thus, the simplified expression is: \[ 2 \cdot 3^{2-n} \]