Question
upstudy study bank question image url

2. Complete the following. a) Simplify \( \left(\frac{x}{2}-\frac{5}{x}\right)^{2} \). b) Calculate the value of \( \frac{x^{2}}{4}+\frac{25}{x^{2}} \), if \( \frac{x}{2}-\frac{5}{x}=3 \). 3. Complete the following. a) Simplify \( \left(\frac{x}{3}-\frac{6}{x}\right)^{2} \). b) Then evaluate \( \frac{x^{2}}{9}+\frac{36}{x^{2}} \), if \( \frac{x}{3}-\frac{6}{x}=1 \).

Ask by Klein Gross. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Solutions:** 1. **Problem 2:** - **2.a)** \( \left(\frac{x}{2} - \frac{5}{x}\right)^2 = \frac{x^2}{4} - 5 + \frac{25}{x^2} \) - **2.b)** \( \frac{x^{2}}{4} + \frac{25}{x^{2}} = 14 \) 2. **Problem 3:** - **3.a)** \( \left(\frac{x}{3} - \frac{6}{x}\right)^2 = \frac{x^2}{9} - 4 + \frac{36}{x^2} \) - **3.b)** \( \frac{x^{2}}{9} + \frac{36}{x^{2}} = 5 \)

Solution

Sure, let's solve each part step by step. --- ## Problem 2 ### 2.a) Simplify \( \left(\frac{x}{2} - \frac{5}{x}\right)^{2} \) **Solution:** We can use the algebraic identity for squaring a binomial: \[ (a - b)^2 = a^2 - 2ab + b^2 \] Let \( a = \frac{x}{2} \) and \( b = \frac{5}{x} \). Applying the identity: \[ \left(\frac{x}{2} - \frac{5}{x}\right)^2 = \left(\frac{x}{2}\right)^2 - 2 \cdot \frac{x}{2} \cdot \frac{5}{x} + \left(\frac{5}{x}\right)^2 \] Now, calculate each term: 1. **First Term:** \[ \left(\frac{x}{2}\right)^2 = \frac{x^2}{4} \] 2. **Second Term:** \[ 2 \cdot \frac{x}{2} \cdot \frac{5}{x} = 2 \cdot \frac{5}{2} = 5 \] Since it's subtracted in the original identity: \[ -2ab = -5 \] 3. **Third Term:** \[ \left(\frac{5}{x}\right)^2 = \frac{25}{x^2} \] **Combined Simplification:** \[ \left(\frac{x}{2} - \frac{5}{x}\right)^2 = \frac{x^2}{4} - 5 + \frac{25}{x^2} \] --- ### 2.b) Calculate the value of \( \frac{x^{2}}{4} + \frac{25}{x^{2}} \), if \( \frac{x}{2} - \frac{5}{x} = 3 \) **Solution:** From part 2.a, we have: \[ \left(\frac{x}{2} - \frac{5}{x}\right)^2 = \frac{x^2}{4} + \frac{25}{x^2} - 5 \] Given that: \[ \frac{x}{2} - \frac{5}{x} = 3 \] Square both sides: \[ \left(\frac{x}{2} - \frac{5}{x}\right)^2 = 3^2 = 9 \] Substitute back: \[ \frac{x^2}{4} + \frac{25}{x^2} - 5 = 9 \] Solve for \( \frac{x^2}{4} + \frac{25}{x^2} \): \[ \frac{x^2}{4} + \frac{25}{x^2} = 9 + 5 = 14 \] **Answer:** \( \frac{x^{2}}{4} + \frac{25}{x^{2}} = 14 \) --- ## Problem 3 ### 3.a) Simplify \( \left(\frac{x}{3} - \frac{6}{x}\right)^{2} \) **Solution:** Again, use the binomial square identity: \[ (a - b)^2 = a^2 - 2ab + b^2 \] Let \( a = \frac{x}{3} \) and \( b = \frac{6}{x} \). Applying the identity: \[ \left(\frac{x}{3} - \frac{6}{x}\right)^2 = \left(\frac{x}{3}\right)^2 - 2 \cdot \frac{x}{3} \cdot \frac{6}{x} + \left(\frac{6}{x}\right)^2 \] Now, calculate each term: 1. **First Term:** \[ \left(\frac{x}{3}\right)^2 = \frac{x^2}{9} \] 2. **Second Term:** \[ 2 \cdot \frac{x}{3} \cdot \frac{6}{x} = 2 \cdot \frac{6}{3} = 2 \cdot 2 = 4 \] With the negative sign from the identity: \[ -2ab = -4 \] 3. **Third Term:** \[ \left(\frac{6}{x}\right)^2 = \frac{36}{x^2} \] **Combined Simplification:** \[ \left(\frac{x}{3} - \frac{6}{x}\right)^2 = \frac{x^2}{9} - 4 + \frac{36}{x^2} \] --- ### 3.b) Evaluate \( \frac{x^{2}}{9} + \frac{36}{x^{2}} \), if \( \frac{x}{3} - \frac{6}{x} = 1 \) **Solution:** From part 3.a, we have: \[ \left(\frac{x}{3} - \frac{6}{x}\right)^2 = \frac{x^2}{9} + \frac{36}{x^2} - 4 \] Given that: \[ \frac{x}{3} - \frac{6}{x} = 1 \] Square both sides: \[ \left(\frac{x}{3} - \frac{6}{x}\right)^2 = 1^2 = 1 \] Substitute back: \[ \frac{x^2}{9} + \frac{36}{x^2} - 4 = 1 \] Solve for \( \frac{x^2}{9} + \frac{36}{x^2} \): \[ \frac{x^2}{9} + \frac{36}{x^2} = 1 + 4 = 5 \] **Answer:** \( \frac{x^{2}}{9} + \frac{36}{x^{2}} = 5 \) ---

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To simplify \( \left(\frac{x}{2}-\frac{5}{x}\right)^{2} \): We start by expanding the square: \[ \left(\frac{x}{2}-\frac{5}{x}\right)^{2} = \left(\frac{x}{2}\right)^{2} - 2 \cdot \frac{x}{2} \cdot \frac{5}{x} + \left(-\frac{5}{x}\right)^{2} = \frac{x^{2}}{4} - 5 + \frac{25}{x^{2}}. \] So, the simplified form is: \[ \frac{x^{2}}{4} - 5 + \frac{25}{x^{2}}. \] Now to calculate \( \frac{x^{2}}{4}+\frac{25}{x^{2}} \), given \( \frac{x}{2}-\frac{5}{x}=3 \): From the given equation, rearranging gives: \[ \frac{x}{2} = 3 + \frac{5}{x}, \] Multiplying both sides by \( 2x \) results in: \[ x^{2} = 6x + 10 \Rightarrow x^{2} - 6x - 10 = 0. \] Using the quadratic formula: \[ x = \frac{6 \pm \sqrt{(-6)^{2} - 4(1)(-10)}}{2(1)} = \frac{6 \pm \sqrt{56}}{2} = 3 \pm \sqrt{14}. \] Now substitute \( x^{2} = 4(3 + \sqrt{14})(3 - \sqrt{14})\): Calculating, we find \( \frac{x^{2}}{4} + \frac{25}{x^{2}} = 6 + \frac{25}{10} = 6 + 2.5 = 8.5. \) --- To simplify \( \left(\frac{x}{3}-\frac{6}{x}\right)^{2} \): When expanding this expression, we get: \[ \left(\frac{x}{3}-\frac{6}{x}\right)^{2} = \left(\frac{x}{3}\right)^{2} - 2 \cdot \frac{x}{3} \cdot \frac{6}{x} + \left(-\frac{6}{x}\right)^{2} = \frac{x^{2}}{9} - 4 + \frac{36}{x^{2}}. \] Thus, the simplified expression is: \[ \frac{x^{2}}{9} - 4 + \frac{36}{x^{2}}. \] Next, to evaluate \( \frac{x^{2}}{9}+\frac{36}{x^{2}} \) when \( \frac{x}{3}-\frac{6}{x}=1 \): From the equation given, rearranging gives: \[ \frac{x}{3} = 1 + \frac{6}{x}. \] Multiplying through by \( 3x \) yields: \[ x^{2} = 3x + 18 \Rightarrow x^{2} - 3x - 18 = 0. \] Using the quadratic formula, we have: \[ x = \frac{3 \pm \sqrt{(3)^{2} + 4(18)}}{2} = \frac{3 \pm \sqrt{81}}{2} = \frac{3 \pm 9}{2}. \] Solving gives \( x = 6 \) or \( x = -3 \). Substituting \( x^{2} = 36 \), we find: \[ \frac{x^{2}}{9} + \frac{36}{x^{2}} = 4 + 1 = 5. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy