For the function \( f(x)=\sqrt{3-x} \), find \( f(0), f(-x),-f(x), f(x+1) \), and \( f(x+h) \) (Use symbolic notation and fractions where needed.)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find the different values of the function \( f(x) = \sqrt{3 - x} \), we can evaluate it for the given inputs. 1. \( f(0) \): \[ f(0) = \sqrt{3 - 0} = \sqrt{3} \] 2. \( f(-x) \): \[ f(-x) = \sqrt{3 - (-x)} = \sqrt{3 + x} \] 3. \( -f(x) \): \[ -f(x) = -\sqrt{3 - x} \] 4. \( f(x + 1) \): \[ f(x + 1) = \sqrt{3 - (x + 1)} = \sqrt{3 - x - 1} = \sqrt{2 - x} \] 5. \( f(x + h) \): \[ f(x + h) = \sqrt{3 - (x + h)} = \sqrt{3 - x - h} \] So the evaluations are: - \( f(0) = \sqrt{3} \) - \( f(-x) = \sqrt{3 + x} \) - \( -f(x) = -\sqrt{3 - x} \) - \( f(x + 1) = \sqrt{2 - x} \) - \( f(x + h) = \sqrt{3 - x - h} \)