Question
upstudy study bank question image url

В прямоугольном треугольнике \( A B C \) угол \( C \) равен \( 90^{\circ} \), катет \( A C=8 \), а катет \( B C=15 \). Найдите радиисвписанной окоужности.

Ask by Crawford Reese. in Russia
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Радиус вписанной окружности равен 3.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

В прямоугольном треугольнике радиус вписанной окружности можно найти по формуле \( r = \frac{a + b - c}{2} \), где \( a \) и \( b \) — катеты, а \( c \) — гипотенуза. Сначала найдем гипотенузу с помощью теоремы Пифагора: \[ c = \sqrt{AC^2 + BC^2} = \sqrt{8^2 + 15^2} = \sqrt{64 + 225} = \sqrt{289} = 17. \] Теперь подставим значения в формулу для радиуса: \[ r = \frac{8 + 15 - 17}{2} = \frac{6}{2} = 3. \] Таким образом, радиус вписанной окружности равен 3.

Related Questions

Latest Geometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy