Question
upstudy study bank question image url

For the linear transformation \( L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \) given by \[ L((x, y))=(x+2 y,-x, 0) \] find the matrix \( A_{B C} \) for \( L \) with respect to the bases \[ B=\{(1,3),(-2,4)\}, C=\{(1,1,1),(2,2,0),(3,0,0)\} \]

Ask by Mitchell Nichols. in Russia
Dec 16,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

The matrix \( A_{B C} \) for the linear transformation \( L \) is: \[ \boxed{\begin{pmatrix} 0 & 0 \\ -\frac{1}{2} & 1 \\ \frac{8}{3} & \frac{4}{3} \end{pmatrix}} \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

To find the matrix \( A_{BC} \) of the linear transformation \( L \) with respect to the bases \( B \) and \( C \), we need to follow these steps: 1. **Determine the images of the basis vectors in \( B \) under \( L \).** 2. **Express each of these resulting vectors in terms of the basis \( C \).** 3. **Construct the matrix using the coefficients from the second step.** ### Step 1: Compute \( L \) on the basis vectors in \( B \) The basis \( B \) consists of the vectors \( (1, 3) \) and \( (-2, 4) \). - For \( (1, 3) \): \[ L((1, 3)) = (1 + 2 \cdot 3, -1, 0) = (1 + 6, -1, 0) = (7, -1, 0) \] - For \( (-2, 4) \): \[ L((-2, 4)) = (-2 + 2 \cdot 4, -(-2), 0) = (-2 + 8, 2, 0) = (6, 2, 0) \] ### Step 2: Express the results in terms of the basis \( C \) The basis \( C \) consists of the vectors \( (1, 1, 1) \), \( (2, 2, 0) \), and \( (3, 0, 0) \). **Express \( L((1, 3)) = (7, -1, 0) \) in terms of \( C \)**: We need to find scalars \( a, b, c \) such that: \[ a(1, 1, 1) + b(2, 2, 0) + c(3, 0, 0) = (7, -1, 0). \] This gives us the system of equations: 1. \( a + 2b + 3c = 7 \) 2. \( a + 2b = -1 \) 3. \( a = 0 \) (from the third component) From the third equation, we substitute \( a = 0 \) into the second equation: \[ 0 + 2b = -1 \implies b = -\frac{1}{2}. \] Now substituting \( a = 0 \) and \( b = -\frac{1}{2} \) into the first equation: \[ 0 + 2\left(-\frac{1}{2}\right) + 3c = 7 \implies -1 + 3c = 7 \implies 3c = 8 \implies c = \frac{8}{3}. \] Thus, we have: \[ L((1, 3)) = 0(1, 1, 1) - \frac{1}{2}(2, 2, 0) + \frac{8}{3}(3, 0, 0). \] The coefficients are \( (0, -\frac{1}{2}, \frac{8}{3}) \). **Express \( L((-2, 4)) = (6, 2, 0) \) in terms of \( C \)**: Similarly, we want \( d, e, f \) such that: \[ d(1, 1, 1) + e(2, 2, 0) + f(3, 0, 0) = (6, 2, 0). \] This gives us another system: 1. \( d + 2e + 3f = 6 \) 2. \( d + 2e = 2 \) 3. \( d = 0 \) From the third equation again, \( d = 0 \). Substituting into the second: \[ 0 + 2e = 2 \implies e = 1. \] Now substituting into the first: \[ 0 + 2(1) + 3f = 6 \implies 2 + 3f = 6 \implies 3f = 4 \implies f = \frac{4}{3}. \] Thus: \[ L((-2, 4)) = 0(1, 1, 1) + 1(2, 2, 0) + \frac{4}{3}(3, 0, 0) \] gives the coefficients \( (0, 1

Related Questions

Latest Other Questions

Numéro d'étudiant : 22007890 La qualité de la rédaction sera prise en compte. Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. \( ~ \) trer que l'endomorphisme \( f \) est diagonalisable. Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\mathrm{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025
Numéro d'étudiant : La qualité de la rédaction sera prise en compte. Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. (b) Déterminer le polynôme caractéristique \( \chi_{f}(x) \). (c) Déterminer les valeurs propres de \( f \), leurs multiplicités algébriques et montrer que l'endomorphisme \( f \) est diagonalisable. (d) Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy