Question
upstudy study bank question image url

\( \frac{\left(2^{3}\right)^{2} ; 2^{2}}{2^{4}} \quad \) 6) \( \frac{4^{4}}{4^{2} \cdot\left(4^{3}\right)^{2}} \)

Ask by Knight Ford. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Simplify the expressions: 1. \( \frac{(2^{3})^{2} \div 2^{2}}{2^{4}} = 16 \) 2. \( \frac{4^{4}}{4^{2} \cdot (4^{3})^{2}} = \frac{1}{256} \) or 0.00390625

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Mind Expander

Let's break this down! To simplify \( \frac{\left(2^{3}\right)^{2} ; 2^{2}}{2^{4}} \), first calculate \( (2^3)^2 = 2^{6} \). So, the expression becomes \( \frac{2^{6} \cdot 2^{2}}{2^{4}} \). Using the property of exponents that states \( a^m \cdot a^n = a^{m+n} \), we have \( 2^{6+2} = 2^{8} \). Now, simplifying \( \frac{2^{8}}{2^{4}} \) gives us \( 2^{8-4} = 2^{4} = 16 \). Now for \( \frac{4^{4}}{4^{2} \cdot\left(4^{3}\right)^{2}} \), we start with \( (4^3)^2 = 4^{6} \). The expression becomes \( \frac{4^{4}}{4^{2} \cdot 4^{6}} \). This combines in the denominator: \( 4^{2+6} = 4^{8} \). Now simplifying \( \frac{4^{4}}{4^{8}} = 4^{4-8} = 4^{-4} = \frac{1}{4^{4}} = \frac{1}{256} \). So, the final results are \( 16 \) and \( \frac{1}{256} \)!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy