Question
Find the value of the expression \[ r+1^{s}+4^{2}+t \] for \( r=2, s=3 \), and \( t=1 \).
Ask by Schneider Mann. in the United States
Jan 24,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
The value of the expression is 20.
Solution
To evaluate the expression \( r + 1^{s} + 4^{2} + t \) with the given values \( r = 2 \), \( s = 3 \), and \( t = 1 \), follow these steps:
1. **Substitute the given values into the expression:**
\[
2 + 1^{3} + 4^{2} + 1
\]
2. **Calculate each term:**
- \( 1^{3} = 1 \)
- \( 4^{2} = 16 \)
3. **Add all the terms together:**
\[
2 + 1 + 16 + 1 = 20
\]
**Final Answer:** \( \boxed{20} \)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
To evaluate the expression \( r + 1^{s} + 4^{2} + t \) given the values \( r = 2 \), \( s = 3 \), and \( t = 1 \), we will substitute the values into the expression. First, let's substitute the values in: \[ r + 1^{s} + 4^{2} + t = 2 + 1^{3} + 4^{2} + 1 \] Now, we calculate each component: 1. \( 1^{s} = 1^{3} = 1 \) 2. \( 4^{2} = 16 \) Now, we substitute these values back into the expression: \[ 2 + 1 + 16 + 1 \] Next, we add them step-by-step: \[ 2 + 1 = 3 \] \[ 3 + 16 = 19 \] \[ 19 + 1 = 20 \] Thus, the value of the expression is \[ \boxed{20} \]