Answer
The division of \( x^{4} + 17x^{2} - 46x + 28 \) by \( x - 7 \) results in a quotient of \( x^{3} + 7x^{2} + 66x + 416 \) with a remainder of 2940.
Solution
Certainly! Let's perform the division of the polynomial
\[
P(x) = x^{4} - 10x^{2} + 27x^{2} - 46x + 28
\]
by
\[
D(x) = x - 7.
\]
First, simplify the polynomial \( P(x) \):
\[
P(x) = x^{4} + ( -10x^{2} + 27x^{2} ) - 46x + 28 = x^{4} + 17x^{2} - 46x + 28.
\]
Now, we'll perform the polynomial long division.
---
### Polynomial Long Division
**Step 1:** Set up the division.
\[
\begin{array}{r|llll}
x - 7 & x^{4} & + 0x^{3} & + 17x^{2} & -46x & +28 \\
\hline
\end{array}
\]
*(Note: We've included the \( 0x^{3} \) term to account for the missing \( x^{3} \) term in \( P(x) \).)*
**Step 2:** Divide the highest degree term of the dividend by the highest degree term of the divisor.
\[
\frac{x^{4}}{x} = x^{3}
\]
**Step 3:** Multiply the entire divisor by this result and subtract from the dividend.
\[
(x - 7) \times x^{3} = x^{4} - 7x^{3}
\]
Subtracting from the dividend:
\[
\begin{array}{r|llll}
x - 7 & x^{4} & + 0x^{3} & + 17x^{2} & -46x & +28 \\
\hline
& x^{4} & -7x^{3} & & & \\
\hline
& 0 & +7x^{3} & +17x^{2} & -46x & +28 \\
\end{array}
\]
**Step 4:** Repeat the process with the new dividend \( 7x^{3} + 17x^{2} - 46x + 28 \).
\[
\frac{7x^{3}}{x} = 7x^{2}
\]
Multiply and subtract:
\[
(x - 7) \times 7x^{2} = 7x^{3} - 49x^{2}
\]
\[
\begin{array}{r|llll}
& 0 & +7x^{3} & +17x^{2} & -46x & +28 \\
\hline
& & 7x^{3} & -49x^{2} & & \\
\hline
& & 0 & +66x^{2} & -46x & +28 \\
\end{array}
\]
**Step 5:** Continue with \( 66x^{2} - 46x + 28 \).
\[
\frac{66x^{2}}{x} = 66x
\]
Multiply and subtract:
\[
(x - 7) \times 66x = 66x^{2} - 462x
\]
\[
\begin{array}{r|llll}
& & 0 & +66x^{2} & -46x & +28 \\
\hline
& & & 66x^{2} & -462x & \\
\hline
& & & 0 & +416x & +28 \\
\end{array}
\]
**Step 6:** Proceed with \( 416x + 28 \).
\[
\frac{416x}{x} = 416
\]
Multiply and subtract:
\[
(x - 7) \times 416 = 416x - 2912
\]
\[
\begin{array}{r|llll}
& & & 0 & +416x & +28 \\
\hline
& & & & 416x & -2912 \\
\hline
& & & & 0 & +2940 \\
\end{array}
\]
**Step 7:** Since the degree of the remainder \( 2940 \) is less than the degree of the divisor \( x - 7 \), the division process stops here.
---
### Final Result
The result of the division is:
\[
\frac{x^{4} + 17x^{2} - 46x + 28}{x - 7} = x^{3} + 7x^{2} + 66x + 416 + \frac{2940}{x - 7}
\]
Or, more compactly:
\[
x^{4} + 17x^{2} - 46x + 28 = (x - 7)(x^{3} + 7x^{2} + 66x + 416) + 2940
\]
**Interpretation:**
- **Quotient:** \( x^{3} + 7x^{2} + 66x + 416 \)
- **Remainder:** \( 2940 \)
---
**Note:** If the original polynomial was intended to include an \( x^{3} \) term (for example, \( x^{4} - 10x^{3} + 27x^{2} - 46x + 28 \)), please let me know so I can adjust the division accordingly.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution