Question
The number of bacteria in a refrigerated food product is given by
\( N(T)=29 T^{2}-164 T+80,6
Ask by Curry Gray. in the United States
Oct 28,2024
Ask by Curry Gray. in the United States
Oct 28,2024
Upstudy AI Solution
Tutor-Verified Answer
Answer
The time when the bacteria count reaches 6326 is approximately 0.503 hours.
Solution
To find the time when the bacteria count reaches 6326, we start with the composite function \( N(T(t)) \):
\[
N(T(t)) = 725 t^2 - 298 t - \frac{3031}{25}
\]
We need to set this equal to 6326 and solve for \( t \):
\[
725 t^2 - 298 t - \frac{3031}{25} = 6326
\]
First, we can rearrange the equation:
\[
725 t^2 - 298 t - \frac{3031}{25} - 6326 = 0
\]
Next, we need to express 6326 in terms of a fraction with a denominator of 25:
\[
6326 = \frac{6326 \times 25}{25} = \frac{158150}{25}
\]
Now, substituting this back into the equation gives:
\[
725 t^2 - 298 t - \frac{3031}{25} - \frac{158150}{25} = 0
\]
Combining the constant terms:
\[
725 t^2 - 298 t - \frac{3031 + 158150}{25} = 0
\]
Calculating \( 3031 + 158150 \):
\[
3031 + 158150 = 161181
\]
Thus, we have:
\[
725 t^2 - 298 t - \frac{161181}{25} = 0
\]
To eliminate the fraction, we can multiply the entire equation by 25:
\[
25(725 t^2) - 25(298 t) - 161181 = 0
\]
This simplifies to:
\[
18125 t^2 - 7450 t - 161181 = 0
\]
Now we can use the quadratic formula to solve for \( t \):
\[
t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
where \( a = 18125 \), \( b = -7450 \), and \( c = -161181 \).
Calculating the discriminant \( b^2 - 4ac \):
\[
b^2 = (-7450)^2 = 55506250
\]
\[
4ac = 4 \times 18125 \times (-161181) = -11600000000
\]
Thus,
\[
b^2 - 4ac = 55506250 + 11600000000 = 11655506250
\]
Now we can find \( t \):
\[
t = \frac{7450 \pm \sqrt{11655506250}}{2 \times 18125}
\]
Calculating \( \sqrt{11655506250} \):
\[
\sqrt{11655506250} \approx 10793.5
\]
Now substituting back into the formula:
\[
t = \frac{7450 \pm 10793.5}{36250}
\]
Calculating the two possible values for \( t \):
1. \( t = \frac{7450 + 10793.5}{36250} \approx \frac{18243.5}{36250} \approx 0.503 \)
2. \( t = \frac{7450 - 10793.5}{36250} \approx \frac{-3333.5}{36250} \) (this value is negative and not physically meaningful in this context)
Thus, the only valid solution is:
\[
t \approx 0.503 \text{ hours}
\]
So, the time when the bacteria count reaches 6326 is approximately:
\[
\text{Time Needed} = 0.503 \text{ hours}
\]
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg

