\( \frac { 5 ^ { n - 1 } \cdot 2 ^ { n + 2 } } { 10 ^ { n } - 10 ^ { n - 1 } \cdot 2 } \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To simplify the expression, we can start with the denominator: \( 10^n - 10^{n-1} \cdot 2 \) This can be factored as: \( 10^{n-1} (10 - 2) = 10^{n-1} \cdot 8 \). Now substituting the denominator back into the expression gives us: \[ \frac{5^{n-1} \cdot 2^{n+2}}{10^{n-1} \cdot 8}. \] Notice that \( 10^{n-1} \) can be rewritten as \( (2 \cdot 5)^{n-1} = 2^{n-1} \cdot 5^{n-1} \). Therefore, we can rewrite the expression: \[ \frac{5^{n-1} \cdot 2^{n+2}}{2^{n-1} \cdot 5^{n-1} \cdot 8}. \] This further simplifies to: \[ \frac{2^{n+2}}{2^{n-1} \cdot 8} = \frac{2^{n+2}}{2^{n-1} \cdot 2^3} = \frac{2^{n+2}}{2^{n+2}} = 1. \] Thus, the simplified result of the given expression is: \[ \boxed{1}. \]