Question
upstudy study bank question image url

\( \left. \begin{array} { l } { f ^ { \prime } ( x ) = \lim _ { h \rightarrow 0 } \frac { ( x + h ) - f ( x ) } { h } } \\ { f ( x ) = 5 x } \end{array} \right. \)

Ask by Gross Barrett. in Thailand
Jan 30,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

อนุพันธ์ของ \( f(x) = 5x \) คือ 5.

Solution

ในการหาค่าอนุพันธ์ของฟังก์ชัน \( f(x) = 5x \) โดยใช้คำนิยามของอนุพันธ์ เราสามารถทำได้ดังนี้: อนุพันธ์ของ \( f(x) \) ที่จุด \( x \) นิยามโดย \[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] แทน \( f(x) = 5x \) ลงไปในสมการ: \[ f'(x) = \lim_{h \to 0} \frac{5(x + h) - 5x}{h} \] คำนวณในเศษส่วน: \[ f'(x) = \lim_{h \to 0} \frac{5x + 5h - 5x}{h} = \lim_{h \to 0} \frac{5h}{h} \] ยกเลิก \( h \) ในเศษและส่วน: \[ f'(x) = \lim_{h \to 0} 5 = 5 \] ดังนั้น อนุพันธ์ของฟังก์ชัน \( f(x) = 5x \) คือ \[ f'(x) = 5 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find the derivative of the function \( f(x) = 5x \), we can plug this into the definition. Thus, \( f'(x) = \lim_{h \to 0} \frac{(x + h) - 5x}{h} = \lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} 1 = 1 \). So, the derivative \( f'(x) \) is constant at 5, meaning that the function has the same rate of change at any point. In the real world, derivatives are incredibly useful! For instance, if you were analyzing speed, the derivative of a position function gives you the velocity. In our case, since \( f(x) = 5x \) represents a linear function, its slope or rate of change is consistently 5—think of it as moving steadily at 5 units per time interval regardless of where you are on that line.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy