Question
upstudy study bank question image url

Write each expression in the form \( e^{k x} \) for a suitable con- stant \( k \). \( \begin{array}{ll}\text { 1.3. }\left(e^{2}\right)^{x},\left(\frac{1}{e}\right)^{x} & \text { 14. }\left(e^{3}\right)^{x / 5},\left(\frac{1}{e^{2}}\right)^{x} \\ \text { 15. }\left(\frac{1}{e^{3}}\right)^{2 x}, e^{1-x} \cdot e^{3 x-1} & \text { 16. }\left(\frac{e^{5}}{e^{3}}\right)^{x}, e^{4 x+2} \cdot e^{x-2}\end{array} \)

Ask by Simpson Wells. in the United States
Feb 05,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the expressions rewritten in the form \( e^{k x} \): 1. \( e^{2x} \) 2. \( e^{-x} \) 3. \( e^{\frac{3x}{5}} \) 4. \( e^{-2x} \) 5. \( e^{-6x} \) 6. \( e^{2x} \) 7. \( e^{2x} \) 8. \( e^{5x} \)

Solution

Simplify the expression by following steps: - step0: Solution: \(\left(\frac{1}{e}\right)^{x}\) - step1: Expand the expression: \(\frac{1}{e^{x}}\) Calculate or simplify the expression \( (e^2)^x \). Simplify the expression by following steps: - step0: Solution: \(\left(e^{2}\right)^{x}\) - step1: Multiply the exponents: \(e^{2x}\) Calculate or simplify the expression \( e^(4*x+2) * e^(x-2) \). Simplify the expression by following steps: - step0: Solution: \(e^{4x+2}\times e^{x-2}\) - step1: Multiply: \(e^{4x+2+x-2}\) - step2: Calculate: \(e^{5x}\) Calculate or simplify the expression \( (1/e^3)^(2*x) \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{1}{e^{3}}\right)^{2x}\) - step1: Expand the expression: \(\frac{1}{e^{6x}}\) Calculate or simplify the expression \( (e^5/e^3)^x \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{e^{5}}{e^{3}}\right)^{x}\) - step1: Multiply by \(a^{-n}:\) \(\left(e^{5}\times e^{-3}\right)^{x}\) - step2: Multiply the numbers: \(\left(e^{2}\right)^{x}\) - step3: Transform the expression: \(e^{2x}\) Calculate or simplify the expression \( e^(1-x) * e^(3*x-1) \). Simplify the expression by following steps: - step0: Solution: \(e^{1-x}\times e^{3x-1}\) - step1: Multiply: \(e^{1-x+3x-1}\) - step2: Calculate: \(e^{2x}\) Calculate or simplify the expression \( (e^3)^(x/5) \). Simplify the expression by following steps: - step0: Solution: \(\left(e^{3}\right)^{\frac{x}{5}}\) - step1: Multiply the exponents: \(e^{3\times \frac{x}{5}}\) - step2: Multiply the terms: \(e^{\frac{3x}{5}}\) Calculate or simplify the expression \( (1/e^2)^x \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{1}{e^{2}}\right)^{x}\) - step1: Expand the expression: \(\frac{1}{e^{2x}}\) Here are the expressions rewritten in the form \( e^{k x} \) for suitable constants \( k \): 1. \( (e^2)^x = e^{2x} \) 2. \( \left(\frac{1}{e}\right)^x = \frac{1}{e^x} = e^{-x} \) 3. \( (e^3)^{x/5} = e^{\frac{3x}{5}} \) 4. \( \left(\frac{1}{e^2}\right)^x = \frac{1}{e^{2x}} = e^{-2x} \) 5. \( \left(\frac{1}{e^3}\right)^{2x} = \frac{1}{e^{6x}} = e^{-6x} \) 6. \( e^{1-x} \cdot e^{3x-1} = e^{(1-x) + (3x-1)} = e^{2x} \) 7. \( \left(\frac{e^5}{e^3}\right)^x = e^{(5-3)x} = e^{2x} \) 8. \( e^{4x+2} \cdot e^{x-2} = e^{(4x+2) + (x-2)} = e^{5x} \) Thus, the final forms are: - \( e^{2x} \) - \( e^{-x} \) - \( e^{\frac{3x}{5}} \) - \( e^{-2x} \) - \( e^{-6x} \) - \( e^{2x} \) - \( e^{2x} \) - \( e^{5x} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Let’s express each of the provided expressions in the form \( e^{k x} \): 1. \(\left(e^{2}\right)^{x} = e^{2x}\) \(\left(\frac{1}{e}\right)^{x} = e^{-x}\) 14. \(\left(e^{3}\right)^{x/5} = e^{\frac{3}{5}x}\) \(\left(\frac{1}{e^{2}}\right)^{x} = e^{-2x}\) 15. \(\left(\frac{1}{e^{3}}\right)^{2x} = e^{-6x}\) \(e^{1-x} \cdot e^{3x-1} = e^{(1-x) + (3x-1)} = e^{2x}\) 16. \(\left(\frac{e^{5}}{e^{3}}\right)^{x} = \left(e^{5-3}\right)^{x} = e^{2x}\) \(e^{4x+2} \cdot e^{x-2} = e^{(4x+2) + (x-2)} = e^{5x}\) Now, all expressions are neatly boxed in the form \( e^{k x} \)!

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy