Answer
Here are the expressions rewritten in the form \( e^{k x} \):
1. \( e^{2x} \)
2. \( e^{-x} \)
3. \( e^{\frac{3x}{5}} \)
4. \( e^{-2x} \)
5. \( e^{-6x} \)
6. \( e^{2x} \)
7. \( e^{2x} \)
8. \( e^{5x} \)
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{1}{e}\right)^{x}\)
- step1: Expand the expression:
\(\frac{1}{e^{x}}\)
Calculate or simplify the expression \( (e^2)^x \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(e^{2}\right)^{x}\)
- step1: Multiply the exponents:
\(e^{2x}\)
Calculate or simplify the expression \( e^(4*x+2) * e^(x-2) \).
Simplify the expression by following steps:
- step0: Solution:
\(e^{4x+2}\times e^{x-2}\)
- step1: Multiply:
\(e^{4x+2+x-2}\)
- step2: Calculate:
\(e^{5x}\)
Calculate or simplify the expression \( (1/e^3)^(2*x) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{1}{e^{3}}\right)^{2x}\)
- step1: Expand the expression:
\(\frac{1}{e^{6x}}\)
Calculate or simplify the expression \( (e^5/e^3)^x \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{e^{5}}{e^{3}}\right)^{x}\)
- step1: Multiply by \(a^{-n}:\)
\(\left(e^{5}\times e^{-3}\right)^{x}\)
- step2: Multiply the numbers:
\(\left(e^{2}\right)^{x}\)
- step3: Transform the expression:
\(e^{2x}\)
Calculate or simplify the expression \( e^(1-x) * e^(3*x-1) \).
Simplify the expression by following steps:
- step0: Solution:
\(e^{1-x}\times e^{3x-1}\)
- step1: Multiply:
\(e^{1-x+3x-1}\)
- step2: Calculate:
\(e^{2x}\)
Calculate or simplify the expression \( (e^3)^(x/5) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(e^{3}\right)^{\frac{x}{5}}\)
- step1: Multiply the exponents:
\(e^{3\times \frac{x}{5}}\)
- step2: Multiply the terms:
\(e^{\frac{3x}{5}}\)
Calculate or simplify the expression \( (1/e^2)^x \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{1}{e^{2}}\right)^{x}\)
- step1: Expand the expression:
\(\frac{1}{e^{2x}}\)
Here are the expressions rewritten in the form \( e^{k x} \) for suitable constants \( k \):
1. \( (e^2)^x = e^{2x} \)
2. \( \left(\frac{1}{e}\right)^x = \frac{1}{e^x} = e^{-x} \)
3. \( (e^3)^{x/5} = e^{\frac{3x}{5}} \)
4. \( \left(\frac{1}{e^2}\right)^x = \frac{1}{e^{2x}} = e^{-2x} \)
5. \( \left(\frac{1}{e^3}\right)^{2x} = \frac{1}{e^{6x}} = e^{-6x} \)
6. \( e^{1-x} \cdot e^{3x-1} = e^{(1-x) + (3x-1)} = e^{2x} \)
7. \( \left(\frac{e^5}{e^3}\right)^x = e^{(5-3)x} = e^{2x} \)
8. \( e^{4x+2} \cdot e^{x-2} = e^{(4x+2) + (x-2)} = e^{5x} \)
Thus, the final forms are:
- \( e^{2x} \)
- \( e^{-x} \)
- \( e^{\frac{3x}{5}} \)
- \( e^{-2x} \)
- \( e^{-6x} \)
- \( e^{2x} \)
- \( e^{2x} \)
- \( e^{5x} \)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution