Question
upstudy study bank question image url

4. \( f(x)=\frac{-2 x^{2}-2 x+4}{2 x+1} \) a. Vertical Asymptote(s) Equation: b. End Behavior Asymptote Equation: chorizontal) \( x \)-intercept(s): d. \( y \)-intercept: e. Coordinate of Hole: f. Domain: g. Range:

Ask by Davey French. in the United States
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

- **Vertical Asymptote:** \( x = -\frac{1}{2} \) - **\( x \)-intercepts:** \( x = -2 \) and \( x = 1 \) - **\( y \)-intercept:** \( 4 \) - **Domain:** All real numbers except \( x = -\frac{1}{2} \) - **Range:** All real numbers

Solution

Function by following steps: - step0: Find the y-intercept: \(f\left(x\right)=-\frac{2x^{2}+2x-4}{2x+1}\) - step1: Set \(x\)=0\(:\) \(f\left(0\right)=-\frac{2\times 0^{2}+2\times 0-4}{2\times 0+1}\) - step2: Multiply: \(f\left(0\right)=-\frac{2\times 0^{2}+0-4}{2\times 0+1}\) - step3: Multiply: \(f\left(0\right)=-\frac{2\times 0^{2}+0-4}{0+1}\) - step4: Simplify: \(f\left(0\right)=4\) Analyze the x intercept of the function \( f(x)=-\frac{2 x^{2}+2 x-4}{2 x+1} \) Function by following steps: - step0: Find the \(x\)-intercept/zero: \(f\left(x\right)=-\frac{2x^{2}+2x-4}{2x+1}\) - step1: Set \(f\left(x\right)\)=0\(:\) \(0=-\frac{2x^{2}+2x-4}{2x+1}\) - step2: Swap the sides: \(-\frac{2x^{2}+2x-4}{2x+1}=0\) - step3: Find the domain: \(-\frac{2x^{2}+2x-4}{2x+1}=0,x\neq -\frac{1}{2}\) - step4: Rewrite the expression: \(\frac{-2x^{2}-2x+4}{2x+1}=0\) - step5: Cross multiply: \(-2x^{2}-2x+4=\left(2x+1\right)\times 0\) - step6: Simplify the equation: \(-2x^{2}-2x+4=0\) - step7: Factor the expression: \(-2\left(x-1\right)\left(x+2\right)=0\) - step8: Divide the terms: \(\left(x-1\right)\left(x+2\right)=0\) - step9: Separate into possible cases: \(\begin{align}&x-1=0\\&x+2=0\end{align}\) - step10: Solve the equation: \(\begin{align}&x=1\\&x=-2\end{align}\) - step11: Check if the solution is in the defined range: \(\begin{align}&x=1\\&x=-2\end{align},x\neq -\frac{1}{2}\) - step12: Find the intersection: \(\begin{align}&x=1\\&x=-2\end{align}\) - step13: Calculate: \(x_{1}=-2,x_{2}=1\) Find the horizontal asymptotes of \( f(x)=-\frac{2 x^{2}+2 x-4}{2 x+1} \). Function by following steps: - step0: Find the horizontal asymptotes: \(f\left(x\right)=-\frac{2x^{2}+2x-4}{2x+1}\) - step1: Evaluate the limits \(\lim _{x\rightarrow +\infty}\left(f\left(x\right)\right)\) and \(\lim _{x\rightarrow -\infty}\left(f\left(x\right)\right):\) \(\begin{align}&\lim _{x\rightarrow +\infty}\left(-\frac{2x^{2}+2x-4}{2x+1}\right)\\&\lim _{x\rightarrow -\infty}\left(-\frac{2x^{2}+2x-4}{2x+1}\right)\end{align}\) - step2: Calculate: \(\begin{align}&-\infty\\&+\infty\end{align}\) - step3: The function has no horizontal asymptotes: \(\textrm{No horizontal asymptotes}\) Find the vertical asymptotes of \( f(x)=-\frac{2 x^{2}+2 x-4}{2 x+1} \). Function by following steps: - step0: Find the vertical asymptotes: \(f\left(x\right)=-\frac{2x^{2}+2x-4}{2x+1}\) - step1: Evaluate the limit: \(\lim _{x\rightarrow -\frac{1}{2}}\left(-\frac{2x^{2}+2x-4}{2x+1}\right)\) - step2: Rewrite the fraction: \(\lim _{x\rightarrow -\frac{1}{2}}\left(\frac{-2x^{2}-2x+4}{2x+1}\right)\) - step3: Evaluate the left-hand and the right-hand limits: \(\begin{align}&\lim _{x\rightarrow -\frac{1}{2}^{-}}\left(\frac{-2x^{2}-2x+4}{2x+1}\right)\\&\lim _{x\rightarrow -\frac{1}{2}^{+}}\left(\frac{-2x^{2}-2x+4}{2x+1}\right)\end{align}\) - step4: Evaluate the left-hand limit: \(\begin{align}&-\infty\\&+\infty\end{align}\) - step5: Limit does not exist: \(\textrm{The limit does not exist}\) - step6: \(x=-\frac{1}{2}\) is a vertical asymptote\(:\) \(\begin{align}&x=-\frac{1}{2}\textrm{ }\textrm{is a vertical asymptote}\end{align}\) - step7: List all vertical asymptotes of the function: \(\begin{align}&x=-\frac{1}{2}\end{align}\) Analyze the range of the function \( f(x)=-\frac{2 x^{2}+2 x-4}{2 x+1} \) Function by following steps: - step0: Find the range: \(f\left(x\right)=-\frac{2x^{2}+2x-4}{2x+1}\) - step1: Evaluate: \(f\left(x\right) \in \mathbb{R}\) Analyze the range of the function \( f(x)=-\frac{2 x^{2}+2 x-4}{2 x+1} \) Function by following steps: - step0: Find the range: \(f\left(x\right)=-\frac{2x^{2}+2x-4}{2x+1}\) - step1: Evaluate: \(f\left(x\right) \in \mathbb{R}\) Let's analyze the function \( f(x) = \frac{-2x^2 - 2x + 4}{2x + 1} \) step by step to find the required characteristics. ### a. Vertical Asymptote(s) Equation: To find the vertical asymptote, we set the denominator equal to zero: \[ 2x + 1 = 0 \implies x = -\frac{1}{2} \] **Vertical Asymptote:** \( x = -\frac{1}{2} \) ### b. End Behavior Asymptote Equation: For rational functions, if the degree of the numerator is greater than the degree of the denominator, there are no horizontal asymptotes. In this case, the degree of the numerator (2) is greater than the degree of the denominator (1). **End Behavior Asymptote:** No horizontal asymptotes. ### c. \( x \)-intercept(s): To find the \( x \)-intercepts, we set the numerator equal to zero: \[ -2x^2 - 2x + 4 = 0 \] Factoring or using the quadratic formula gives us: \[ x_{1} = -2, \quad x_{2} = 1 \] **\( x \)-intercepts:** \( x = -2 \) and \( x = 1 \) ### d. \( y \)-intercept: To find the \( y \)-intercept, we evaluate \( f(0) \): \[ f(0) = \frac{-2(0)^2 - 2(0) + 4}{2(0) + 1} = \frac{4}{1} = 4 \] **\( y \)-intercept:** \( 4 \) ### e. Coordinate of Hole: A hole occurs when a factor cancels in the numerator and denominator. In this case, there are no common factors, so there is no hole in the function. **Coordinate of Hole:** None ### f. Domain: The domain of the function is all real numbers except where the denominator is zero: \[ f(x) \in \mathbb{R} \text{ except } x = -\frac{1}{2} \] **Domain:** \( x \in \mathbb{R}, x \neq -\frac{1}{2} \) ### g. Range: The range of the function is all real numbers since the function can take any value as \( x \) approaches the vertical asymptote. **Range:** \( f(x) \in \mathbb{R} \) ### Summary: - **Vertical Asymptote:** \( x = -\frac{1}{2} \) - **End Behavior Asymptote:** No horizontal asymptotes - **\( x \)-intercepts:** \( x = -2 \) and \( x = 1 \) - **\( y \)-intercept:** \( 4 \) - **Coordinate of Hole:** None - **Domain:** \( x \in \mathbb{R}, x \neq -\frac{1}{2} \) - **Range:** \( f(x) \in \mathbb{R} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To analyze the function \( f(x)=\frac{-2 x^{2}-2 x+4}{2 x+1} \), let's explore some relevant points. The vertical asymptote occurs where the denominator is zero. Here, solving \( 2x + 1 = 0 \) gives you \( x = -\frac{1}{2} \). For the end behavior, as \( x \) approaches infinity, the function simplifies to \( f(x) \approx -x \), indicating a horizontal asymptote at \( y = -1 \). Now, looking at the intercepts, your \( x \)-intercepts happen when \( -2x^{2}-2x+4=0 \), leading to solutions after factoring or using the quadratic formula. The \( y \)-intercept occurs at \( f(0) \), which is \( 2 \). There are no holes in this function as it is fully defined across the domain except at the vertical asymptote. The domain of \( f(x) \) is \( x \in \mathbb{R}, x \neq -\frac{1}{2} \) while the range is determined by the same observation regarding end behavior and can be expressed as \( y \in \mathbb{R}, y \neq -1 \). The quadratic nature of the numerator and linear nature of the denominator lead to an interesting analysis in calculus, where you can derive properties of the function by examining limits or employing derivative tests for local extrema. For further exploration, consider plotting the function or using an online graphing calculator to visualize how the asymptotes influence the graph and confirm the behavior around the intercepts. Understanding polynomial functions' properties can also provide a richer comprehension of rational functions in general!

Related Questions

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy