Find \( f+g, f-g, f g \) and \( \frac{f}{g} \). Determine the domain for each function \( f(x)=3 x-7, g(x)=x-1 \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To find \( f+g, f-g, fg, \) and \( \frac{f}{g} \): 1. **Sum**: \[ (f+g)(x) = f(x) + g(x) = (3x - 7) + (x - 1) = 4x - 8. \] 2. **Difference**: \[ (f-g)(x) = f(x) - g(x) = (3x - 7) - (x - 1) = 2x - 6. \] 3. **Product**: \[ (fg)(x) = f(x) \cdot g(x) = (3x - 7)(x - 1) = 3x^2 - 3x - 7x + 7 = 3x^2 - 10x + 7. \] 4. **Quotient**: \[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{3x - 7}{x - 1}. \] Note that \( g(x) \neq 0 \) so we require \( x - 1 \neq 0 \) or \( x \neq 1 \). Now, let's determine the domains: - The domain of \( f+g \) is all real numbers, \( (-\infty, \infty) \). - The domain of \( f-g \) is also \( (-\infty, \infty) \). - The domain of \( fg \) remains \( (-\infty, \infty) \). - The domain of \( \frac{f}{g} \) is all real numbers except \( x = 1 \), which can be written as \( (-\infty, 1) \cup (1, \infty) \).