Solution
Certainly! Let's tackle each of the problems step by step.
---
### **Problem 48**
**A truck carries a load of 50 boxes; some are 20 kg boxes and the rest are 25 kg boxes. If the total weight of all boxes is 1175 kg, how many of each type are there?**
**Solution:**
Let's define:
- \( x \) = number of 20 kg boxes
- \( y \) = number of 25 kg boxes
We have two equations based on the problem statement:
1. **Total number of boxes:**
\[
x + y = 50
\]
2. **Total weight of boxes:**
\[
20x + 25y = 1175
\]
**Step 1:** Solve the first equation for \( y \):
\[
y = 50 - x
\]
**Step 2:** Substitute \( y \) into the second equation:
\[
20x + 25(50 - x) = 1175
\]
\[
20x + 1250 - 25x = 1175
\]
\[
-5x + 1250 = 1175
\]
\[
-5x = -75
\]
\[
x = 15
\]
**Step 3:** Substitute \( x = 15 \) back into \( y = 50 - x \):
\[
y = 50 - 15 = 35
\]
**Answer:**
- **20 kg boxes:** 15
- **25 kg boxes:** 35
---
### **Problem 49**
**The product of two numbers is 5. If their sum is \( \frac{9}{2} \), find the numbers.**
**Solution:**
Let the two numbers be \( a \) and \( b \).
We have:
\[
a \times b = 5 \quad \text{(1)}
\]
\[
a + b = \frac{9}{2} \quad \text{(2)}
\]
**Step 1:** Express one variable in terms of the other using equation (2):
\[
b = \frac{9}{2} - a
\]
**Step 2:** Substitute \( b \) into equation (1):
\[
a \left( \frac{9}{2} - a \right) = 5
\]
\[
\frac{9a}{2} - a^2 = 5
\]
\[
- a^2 + \frac{9a}{2} - 5 = 0
\]
\[
2(-a^2) + 9a - 10 = 0
\]
\[
-2a^2 + 9a - 10 = 0
\]
\[
2a^2 - 9a + 10 = 0
\]
**Step 3:** Solve the quadratic equation:
\[
a = \frac{9 \pm \sqrt{81 - 80}}{4} = \frac{9 \pm 1}{4}
\]
So,
\[
a = \frac{10}{4} = 2.5 \quad \text{or} \quad a = \frac{8}{4} = 2
\]
**Step 4:** Find \( b \) for each \( a \):
- If \( a = 2.5 \), then \( b = \frac{9}{2} - 2.5 = 2 \)
- If \( a = 2 \), then \( b = \frac{9}{2} - 2 = 2.5 \)
**Answer:**
The two numbers are **2** and **2.5**.
---
### **Problem 50**
**Find the domain and range of the function \( y = \sqrt{3x - x^2} \).**
**Solution:**
The function involves a square root, so the expression inside must be non-negative:
\[
3x - x^2 \geq 0
\]
\[
x(3 - x) \geq 0
\]
**Step 1:** Solve the inequality \( x(3 - x) \geq 0 \):
- \( x = 0 \) and \( x = 3 \) are the critical points.
- Test intervals:
- \( x < 0 \): Negative
- \( 0 \leq x \leq 3 \): Positive or zero
- \( x > 3 \): Negative
**Domain:**
\[
x \in [0, 3]
\]
**Step 2:** Find the range by determining the possible values of \( y \):
\[
y = \sqrt{3x - x^2}
\]
The maximum value of \( 3x - x^2 \) occurs at the vertex of the parabola \( y = -x^2 + 3x \):
\[
x = \frac{-b}{2a} = \frac{-3}{2(-1)} = 1.5
\]
\[
\text{Maximum } y = \sqrt{3(1.5) - (1.5)^2} = \sqrt{4.5 - 2.25} = \sqrt{2.25} = 1.5
\]
**Range:**
\[
y \in [0, 1.5]
\]
**Answer:**
- **Domain:** \( [0, 3] \)
- **Range:** \( [0, 1.5] \)
---
### **Problem 51**
**Let \( R \) be a relation on the set \( A = \{1, 2, 3, 4, 5, 6\} \) defined by \( R = \{(a, b) : a + b \leq 9\} \).**
#### **(a) List the elements of \( R \).**
**Solution:**
We need to list all ordered pairs \( (a, b) \) where \( a, b \in A \) and \( a + b \leq 9 \).
**List of Pairs:**
- **When \( a = 1 \):**
\[
(1,1),\ (1,2),\ (1,3),\ (1,4),\ (1,5),\ (1,6) \quad [1+6 = 7 \leq 9]
\]
- **When \( a = 2 \):**
\[
(2,1),\ (2,2),\ (2,3),\ (2,4),\ (2,5),\ (2,6) \quad [2+6 = 8 \leq 9]
\]
- **When \( a = 3 \):**
\[
(3,1),\ (3,2),\ (3,3),\ (3,4),\ (3,5),\ (3,6) \quad [3+6 = 9 \leq 9]
\]
- **When \( a = 4 \):**
\[
(4,1),\ (4,2),\ (4,3),\ (4,4),\ (4,5) \quad [4+5 = 9 \leq 9]
\]
- **When \( a = 5 \):**
\[
(5,1),\ (5,2),\ (5,3),\ (5,4) \quad [5+4 = 9 \leq 9]
\]
- **When \( a = 6 \):**
\[
(6,1),\ (6,2),\ (6,3) \quad [6+3 = 9 \leq 9]
\]
**Complete List of Elements in \( R \):**
\[
\begin{aligned}
R = \{ & (1,1),\ (1,2),\ (1,3),\ (1,4),\ (1,5),\ (1,6), \\
& (2,1),\ (2,2),\ (2,3),\ (2,4),\ (2,5),\ (2,6), \\
& (3,1),\ (3,2),\ (3,3),\ (3,4),\ (3,5),\ (3,6), \\
& (4,1),\ (4,2),\ (4,3),\ (4,4),\ (4,5), \\
& (5,1),\ (5,2),\ (5,3),\ (5,4), \\
& (6,1),\ (6,2),\ (6,3) \}
\end{aligned}
\]
#### **(b) Is \( R = R^{-1} \)?**
**Solution:**
\( R^{-1} \) is the inverse relation, consisting of all pairs \( (b, a) \) where \( (a, b) \in R \).
To determine if \( R = R^{-1} \), we need to check if for every \( (a, b) \) in \( R \), the pair \( (b, a) \) is also in \( R \).
**Analysis:**
- Since \( a + b = b + a \), if \( a + b \leq 9 \), then \( b + a \leq 9 \) as well.
- This means that if \( (a, b) \) is in \( R \), then \( (b, a) \) is automatically in \( R \).
**Conclusion:**
Yes, \( R \) is equal to its inverse relation \( R^{-1} \).
**Answer:**
- **(a)** All ordered pairs \( (a, b) \) where \( a, b \in \{1,2,3,4,5,6\} \) and \( a + b \leq 9 \) are:
\[
\begin{aligned}
R = \{ & (1,1),\ (1,2),\ (1,3),\ (1,4),\ (1,5),\ (1,6), \\
& (2,1),\ (2,2),\ (2,3),\ (2,4),\ (2,5),\ (2,6), \\
& (3,1),\ (3,2),\ (3,3),\ (3,4),\ (3,5),\ (3,6), \\
& (4,1),\ (4,2),\ (4,3),\ (4,4),\ (4,5), \\
& (5,1),\ (5,2),\ (5,3),\ (5,4), \\
& (6,1),\ (6,2),\ (6,3) \}
\end{aligned}
\]
- **(b)** Yes, \( R = R^{-1} \) because for every \( (a, b) \) in \( R \), the pair \( (b, a) \) is also in \( R \).