Use the information given about the angle \( \theta, \cot \theta=-4, \sec \theta<0,0 \leq \theta<2 \pi \), to find the exact values of the following. (a) \( \sin (2 \theta) \), (b) \( \cos (2 \theta) \), (c) \( \sin \frac{\theta}{2} \), and (d) \( \cos \frac{\theta}{2} \) (a) \( \sin (2 \theta)=-\frac{8}{17} \) (Type an exact answer, using radicals as needed.) (b) \( \cos (2 \theta)=\frac{15}{17} \) (Type an exact answer, using radicals as needed.) (c) \( \sin \frac{\theta}{2}=\square \) (Type an exact answer, using radicals as needed.)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Given that \( \cot \theta = -4 \) and \( \sec \theta < 0 \), we can deduce that \( \theta \) is in the second quadrant. Since \( \cot \theta = \frac{\cos \theta}{\sin \theta} = -4 \), we can set \( \cos \theta = -4k \) and \( \sin \theta = k \) for some positive value \( k \). To find \( k \), we also apply the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ k^2 + (-4k)^2 = 1 \Rightarrow k^2 + 16k^2 = 1 \Rightarrow 17k^2 = 1 \Rightarrow k^2 = \frac{1}{17} \Rightarrow k = \frac{1}{\sqrt{17}}. \] Thus, \( \sin \theta = \frac{1}{\sqrt{17}} \) and \( \cos \theta = -\frac{4}{\sqrt{17}} \). Now, we can find the answers: (a) Using the double angle formula, \( \sin(2\theta) = 2\sin\theta\cos\theta \): \[ \sin(2\theta) = 2 \left(\frac{1}{\sqrt{17}}\right) \left(-\frac{4}{\sqrt{17}}\right) = -\frac{8}{17}. \] (b) Using the double angle formula, \( \cos(2\theta) = \cos^2\theta - \sin^2\theta \): \[ \cos(2\theta) = \left(-\frac{4}{\sqrt{17}}\right)^2 - \left(\frac{1}{\sqrt{17}}\right)^2 = \frac{16}{17} - \frac{1}{17} = \frac{15}{17}. \] Now to find \( \sin \frac{\theta}{2} \) and \( \cos \frac{\theta}{2} \): We use the half-angle formulas: (c) \( \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} \): \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \left(-\frac{4}{\sqrt{17}}\right)}{2}} = \sqrt{\frac{1 + \frac{4}{\sqrt{17}}}{2}} = \sqrt{\frac{\frac{\sqrt{17} + 4}{\sqrt{17}}}{2}} = \sqrt{\frac{\sqrt{17} + 4}{2\sqrt{17}}}. \] (d) \( \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} \): \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \left(-\frac{4}{\sqrt{17}}\right)}{2}} = \sqrt{\frac{1 - \frac{4}{\sqrt{17}}}{2}} = \sqrt{\frac{\frac{\sqrt{17} - 4}{\sqrt{17}}}{2}} = \sqrt{\frac{\sqrt{17} - 4}{2\sqrt{17}}}. \] To summarize: (c) \( \sin \frac{\theta}{2} = \sqrt{\frac{\sqrt{17} + 4}{2\sqrt{17}}} \) (d) \( \cos \frac{\theta}{2} = \sqrt{\frac{\sqrt{17} - 4}{2\sqrt{17}}} \)