Question
upstudy study bank question image url

Use the information given about the angle \( \theta, \cot \theta=-4, \sec \theta<0,0 \leq \theta<2 \pi \), to find the exact values of the following. (a) \( \sin (2 \theta) \), (b) \( \cos (2 \theta) \), (c) \( \sin \frac{\theta}{2} \), and (d) \( \cos \frac{\theta}{2} \) (a) \( \sin (2 \theta)=-\frac{8}{17} \) (Type an exact answer, using radicals as needed.) (b) \( \cos (2 \theta)=\frac{15}{17} \) (Type an exact answer, using radicals as needed.) (c) \( \sin \frac{\theta}{2}=\square \) (Type an exact answer, using radicals as needed.)

Ask by Harmon Peters. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

(a) \( \sin(2\theta) = -\frac{8}{17} \) (b) \( \cos(2\theta) = \frac{15}{17} \) (c) \( \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{\sqrt{17} + 4}{2\sqrt{17}}} \) (d) \( \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{\sqrt{17} - 4}{2\sqrt{17}}} \)

Solution

To solve the problem, we start with the given information about the angle \( \theta \): 1. \( \cot \theta = -4 \) 2. \( \sec \theta < 0 \) 3. \( 0 \leq \theta < 2\pi \) ### Step 1: Determine the quadrant of \( \theta \) Since \( \cot \theta = -4 \), this means that \( \tan \theta = -\frac{1}{4} \). The cotangent is negative in the second and fourth quadrants. However, since \( \sec \theta < 0 \), which implies that \( \cos \theta < 0 \), we conclude that \( \theta \) must be in the second quadrant. ### Step 2: Find \( \sin \theta \) and \( \cos \theta \) Using the identity \( \cot \theta = \frac{\cos \theta}{\sin \theta} \), we can express \( \cos \theta \) and \( \sin \theta \) in terms of a right triangle. Let: - \( \cos \theta = -4k \) - \( \sin \theta = k \) From the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ k^2 + (-4k)^2 = 1 \] \[ k^2 + 16k^2 = 1 \] \[ 17k^2 = 1 \] \[ k^2 = \frac{1}{17} \] \[ k = \frac{1}{\sqrt{17}} \quad (\text{since } k > 0 \text{ in the second quadrant}) \] Thus, we have: \[ \sin \theta = k = \frac{1}{\sqrt{17}}, \quad \cos \theta = -4k = -\frac{4}{\sqrt{17}} \] ### Step 3: Calculate \( \sin(2\theta) \) and \( \cos(2\theta) \) Using the double angle formulas: \[ \sin(2\theta) = 2 \sin \theta \cos \theta \] \[ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta \] Calculating \( \sin(2\theta) \): \[ \sin(2\theta) = 2 \left(\frac{1}{\sqrt{17}}\right) \left(-\frac{4}{\sqrt{17}}\right) = -\frac{8}{17} \] Calculating \( \cos(2\theta) \): \[ \cos(2\theta) = \left(-\frac{4}{\sqrt{17}}\right)^2 - \left(\frac{1}{\sqrt{17}}\right)^2 = \frac{16}{17} - \frac{1}{17} = \frac{15}{17} \] ### Step 4: Calculate \( \sin\left(\frac{\theta}{2}\right) \) and \( \cos\left(\frac{\theta}{2}\right) \) Using the half-angle formulas: \[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos \theta}{2}} \] \[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos \theta}{2}} \] Calculating \( \sin\left(\frac{\theta}{2}\right) \): \[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \left(-\frac{4}{\sqrt{17}}\right)}{2}} = \sqrt{\frac{1 + \frac{4}{\sqrt{17}}}{2}} = \sqrt{\frac{\frac{\sqrt{17} + 4}{\sqrt{17}}}{2}} = \sqrt{\frac{\sqrt{17} + 4}{2\sqrt{17}}} \] Calculating \( \cos\left(\frac{\theta}{2}\right) \): \[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \left(-\frac{4}{\sqrt{17}}\right)}{2}} = \sqrt{\frac{1 - \frac{4}{\sqrt{17}}}{2}} = \sqrt{\frac{\frac{\sqrt{17} - 4}{\sqrt{17}}}{2}} = \sqrt{\frac{\sqrt{17} - 4}{2\sqrt{17}}} \] ### Final Answers (a) \( \sin(2\theta) = -\frac{8}{17} \) (b) \( \cos(2\theta) = \frac{15}{17} \) (c) \( \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{\sqrt{17} + 4}{2\sqrt{17}}} \) (d) \( \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{\sqrt{17} - 4}{2\sqrt{17}}} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

Given that \( \cot \theta = -4 \) and \( \sec \theta < 0 \), we can deduce that \( \theta \) is in the second quadrant. Since \( \cot \theta = \frac{\cos \theta}{\sin \theta} = -4 \), we can set \( \cos \theta = -4k \) and \( \sin \theta = k \) for some positive value \( k \). To find \( k \), we also apply the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ k^2 + (-4k)^2 = 1 \Rightarrow k^2 + 16k^2 = 1 \Rightarrow 17k^2 = 1 \Rightarrow k^2 = \frac{1}{17} \Rightarrow k = \frac{1}{\sqrt{17}}. \] Thus, \( \sin \theta = \frac{1}{\sqrt{17}} \) and \( \cos \theta = -\frac{4}{\sqrt{17}} \). Now, we can find the answers: (a) Using the double angle formula, \( \sin(2\theta) = 2\sin\theta\cos\theta \): \[ \sin(2\theta) = 2 \left(\frac{1}{\sqrt{17}}\right) \left(-\frac{4}{\sqrt{17}}\right) = -\frac{8}{17}. \] (b) Using the double angle formula, \( \cos(2\theta) = \cos^2\theta - \sin^2\theta \): \[ \cos(2\theta) = \left(-\frac{4}{\sqrt{17}}\right)^2 - \left(\frac{1}{\sqrt{17}}\right)^2 = \frac{16}{17} - \frac{1}{17} = \frac{15}{17}. \] Now to find \( \sin \frac{\theta}{2} \) and \( \cos \frac{\theta}{2} \): We use the half-angle formulas: (c) \( \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} \): \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \left(-\frac{4}{\sqrt{17}}\right)}{2}} = \sqrt{\frac{1 + \frac{4}{\sqrt{17}}}{2}} = \sqrt{\frac{\frac{\sqrt{17} + 4}{\sqrt{17}}}{2}} = \sqrt{\frac{\sqrt{17} + 4}{2\sqrt{17}}}. \] (d) \( \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} \): \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \left(-\frac{4}{\sqrt{17}}\right)}{2}} = \sqrt{\frac{1 - \frac{4}{\sqrt{17}}}{2}} = \sqrt{\frac{\frac{\sqrt{17} - 4}{\sqrt{17}}}{2}} = \sqrt{\frac{\sqrt{17} - 4}{2\sqrt{17}}}. \] To summarize: (c) \( \sin \frac{\theta}{2} = \sqrt{\frac{\sqrt{17} + 4}{2\sqrt{17}}} \) (d) \( \cos \frac{\theta}{2} = \sqrt{\frac{\sqrt{17} - 4}{2\sqrt{17}}} \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy