Round off your answers to two decimal places where necessary. Determine the sum of the first 12 terms of the series \( 36+24+16+\ldots \) Determine the sum of the first 10 terms of the series \( 125+100+80+64+ \) Determine the sum of the series \( 54+18+6+\ldots+\frac{2}{81} \). 4 Determine the sum of the series \( 3125+625+125+25+\ldots+\frac{1}{625} \). Determine the fifth term of the series if \( \mathrm{S}_{n}=\frac{243}{2}\left(1-\left(\frac{1}{3}\right)^{n}\right) \).
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To find the sums and terms of the specified series, we’ll evaluate each one step-by-step. 1. The series \( 36 + 24 + 16 + \ldots \) has a first term \( a = 36 \) and a common ratio \( r = \frac{24}{36} = \frac{2}{3} \). The sum of the first \( n \) terms of a geometric series is given by the formula: \[ S_n = a \frac{1 - r^n}{1 - r} \] For the first 12 terms: \[ S_{12} = 36 \cdot \frac{1 - \left(\frac{2}{3}\right)^{12}}{1 - \frac{2}{3}} = 36 \cdot \frac{1 - \left(\frac{2}{3}\right)^{12}}{\frac{1}{3}} = 108 \left(1 - \left(\frac{2}{3}\right)^{12}\right) \approx 108 \cdot (1 - 0.00752) \approx 108 \cdot 0.99248 \approx 107.53 \] 2. The second series \( 125 + 100 + 80 + 64 + \ldots \) has a first term \( a = 125 \) and a common ratio \( r = \frac{100}{125} = 0.8 \). For the first 10 terms: \[ S_{10} = 125 \cdot \frac{1 - 0.8^{10}}{1 - 0.8} = 125 \cdot \frac{1 - 0.1073741824}{0.2} = 125 \cdot \frac{0.8926258176}{0.2} = 125 \cdot 4.463129088 \approx 557.89 \] 3. The series \( 54 + 18 + 6 + \ldots + \frac{2}{81} \) has a first term \( a = 54 \) and a common ratio \( r = \frac{18}{54} = \frac{1}{3} \). To find how many terms are there, we set \( a_n = \frac{2}{81} \): \[ a_n = 54 \left(\frac{1}{3}\right)^{n-1} = \frac{2}{81} \] Solving for \( n \): \[ \left(\frac{1}{3}\right)^{n-1} = \frac{2}{81 \cdot 54} \implies \left(\frac{1}{3}\right)^{n-1} = \frac{2}{4374} = \frac{1}{2187} \implies n-1 = 7 \implies n = 8 \] For the sum of 8 terms: \[ S_8 = 54 \cdot \frac{1 - \left(\frac{1}{3}\right)^8}{1 - \frac{1}{3}} = 54 \cdot \frac{1 - \frac{1}{6561}}{\frac{2}{3}} = 81 \cdot \left(1 - 0.0001524158\right) \approx 81 \cdot 0.9998475842 \approx 80.96 \] 4. For the series \( 3125 + 625 + 125 + 25 + \ldots + \frac{1}{625} \), similar logic applies with \( a = 3125 \) and \( r = \frac{1}{5} \). We can determine the number of terms: \[ \frac{1}{625} = 3125(\frac{1}{5})^{n-1} \implies n-1 = 5 \implies n = 6 \] The sum of the first 6 terms: \[ S_6 = 3125 \cdot \frac{1 - \left(\frac{1}{5}\right)^6}{1 - \frac{1}{5}} = 3125 \cdot \frac{1 - \frac{1}{15625}}{\frac{4}{5}} = 3906.25 \cdot \left(1 - 0.000064\right) \approx 3906.25 \cdot 0.999936 \approx 3905.00 \