1. Let \( \mathrm{A}=\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right), \mathrm{B}=\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right) \) and \( \mathrm{C}=\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right) \). Then find: \( \begin{array}{lll}\text { a. } \mathrm{AB} & \text { b. } \mathrm{BA} & \text { c. }(\mathrm{AB}) \mathrm{C} \\ \text { d. } \mathrm{A}(\mathrm{BC}) & \text { e. } \mathrm{I}_{2} \mathrm{~A} & \text { f. } \mathrm{BI}_{2}\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
Let's break down the calculations step by step for the given matrices \( \mathrm{A}, \mathrm{B}, \mathrm{C} \). 1. **Calculating \( \mathrm{AB} \)**: \[ \mathrm{AB} = \left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right) \left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right) = \left(\begin{array}{cc}1 \cdot 1 + 1 \cdot (-1) & 1 \cdot 1 + 1 \cdot 0 \\ 0 \cdot 1 + 2 \cdot (-1) & 0 \cdot 1 + 2 \cdot 0\end{array}\right) = \left(\begin{array}{cc}0 & 1 \\ -2 & 0\end{array}\right) \] 2. **Calculating \( \mathrm{BA} \)**: \[ \mathrm{BA} = \left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right) \left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right) = \left(\begin{array}{cc}1 \cdot 1 + 1 \cdot 0 & 1 \cdot 1 + 1 \cdot 2 \\ -1 \cdot 1 + 0 \cdot 0 & -1 \cdot 1 + 0 \cdot 2\end{array}\right) = \left(\begin{array}{cc}1 & 3 \\ -1 & -1\end{array}\right) \] 3. **Calculating \( (\mathrm{AB}) \mathrm{C} \)**: We already found \( \mathrm{AB} = \left(\begin{array}{cc}0 & 1 \\ -2 & 0\end{array}\right) \). Now, \( (\mathrm{AB}) \mathrm{C} \): \[ = \left(\begin{array}{cc}0 & 1 \\ -2 & 0\end{array}\right) \left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right) = \left(\begin{array}{cc}0 \cdot 2 + 1 \cdot 1 & 0 \cdot 1 + 1 \cdot 3 \\ -2 \cdot 2 + 0 \cdot 1 & -2 \cdot 1 + 0 \cdot 3\end{array}\right) = \left(\begin{array}{cc}1 & 3 \\ -4 & -2\end{array}\right) \] 4. **Calculating \( \mathrm{A}(\mathrm{BC}) \)**: Now we need \( \mathrm{BC} \): \[ \mathrm{BC} = \left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right) \left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right) = \left(\begin{array}{cc}1 \cdot 2 + 1 \cdot 1 & 1 \cdot 1 + 1 \cdot 3 \\ -1 \cdot 2 + 0 \cdot 1 & -1 \cdot 1 + 0 \cdot 3\end{array}\right) = \left(\begin{array}{cc}3 & 4 \\ -2 & -1\end{array}\right) \] Now calculate \( \mathrm{A}(\mathrm{BC}) \): \[ = \left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right) \left(\begin{array}{cc}3 & 4 \\ -2 & -1\end{array}\right) = \left(\begin{array}{cc}1 \cdot 3 + 1 \cdot (-2) & 1 \cdot 4 + 1 \cdot (-1) \\ 0 \cdot 3 + 2 \cdot (-2) & 0 \cdot