Question
upstudy study bank question image url

b) \( \left.\begin{array}{rl}\frac{3(1-2 x)}{5} & >\frac{1}{2} \\ 4 x-5 & \leq \frac{x-1}{3}\end{array}\right\} \)

Ask by Turnbull Lindsey. in Spain
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La solución del sistema de desigualdades es \( x < \frac{1}{12} \).

Solution

Para resolver el sistema de desigualdades: \[ \left.\begin{array}{rl} \frac{3(1-2 x)}{5} & >\frac{1}{2} \\ 4 x-5 & \leq \frac{x-1}{3} \end{array}\right\} \] Vamos a resolver cada desigualdad por separado. ### Desigualdad 1: \[ \frac{3(1-2 x)}{5} > \frac{1}{2} \] 1. Multiplicamos ambos lados por 5 para eliminar el denominador: \[ 3(1-2x) > \frac{5}{2} \] 2. Expandimos el lado izquierdo: \[ 3 - 6x > \frac{5}{2} \] 3. Restamos 3 de ambos lados: \[ -6x > \frac{5}{2} - 3 \] 4. Convertimos 3 a fracción con el mismo denominador: \[ -6x > \frac{5}{2} - \frac{6}{2} = \frac{-1}{2} \] 5. Dividimos ambos lados por -6 (cambiando la dirección de la desigualdad): \[ x < \frac{-1/2}{-6} = \frac{1}{12} \] ### Desigualdad 2: \[ 4x - 5 \leq \frac{x-1}{3} \] 1. Multiplicamos ambos lados por 3 para eliminar el denominador: \[ 3(4x - 5) \leq x - 1 \] 2. Expandimos el lado izquierdo: \[ 12x - 15 \leq x - 1 \] 3. Restamos \(x\) de ambos lados: \[ 12x - x - 15 \leq -1 \] \[ 11x - 15 \leq -1 \] 4. Sumamos 15 a ambos lados: \[ 11x \leq 14 \] 5. Dividimos ambos lados por 11: \[ x \leq \frac{14}{11} \] ### Solución del sistema: Ahora combinamos las soluciones de ambas desigualdades: 1. De la primera desigualdad, tenemos: \[ x < \frac{1}{12} \] 2. De la segunda desigualdad, tenemos: \[ x \leq \frac{14}{11} \] La solución del sistema es: \[ x < \frac{1}{12} \] Esto significa que cualquier valor de \(x\) que sea menor que \(\frac{1}{12}\) satisface ambas desigualdades.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve the first inequality \( \frac{3(1-2x)}{5} > \frac{1}{2} \), start by multiplying both sides by 5 to eliminate the fraction: \( 3(1 - 2x) > \frac{5}{2} \). Distributing gives \( 3 - 6x > \frac{5}{2} \). Next, subtract 3 from both sides: \( -6x > \frac{5}{2} - \frac{6}{2} \Rightarrow -6x > -\frac{1}{2} \). Dividing by -6 reverses the inequality: \( x < \frac{1}{12} \). Now, let's tackle the second inequality \( 4x - 5 \leq \frac{x - 1}{3} \). Start by multiplying through by 3 to clear the fraction: \( 12x - 15 \leq x - 1 \). Next, bring \( x \) to the left: \( 12x - x - 15 \leq -1 \Rightarrow 11x - 15 \leq -1 \). Adding 15 to both sides gives \( 11x \leq 14 \). Finally, divide by 11: \( x \leq \frac{14}{11} \). So, the solutions are \( x < \frac{1}{12} \) and \( x \leq \frac{14}{11} \). The final answer is \( x < \frac{1}{12} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy