Find \( f+g, f-g, f g, \frac{f}{g} \). Determine the domain for each function. \( f(x)=\frac{9 x}{x-3}, g(x)=\frac{7}{x+7} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To find \( f + g \), \( f - g \), \( fg \), and \( \frac{f}{g} \), we start with the given functions: \[ f(x) = \frac{9x}{x-3}, \quad g(x) = \frac{7}{x+7} \] 1. **Sum \( f + g \)**: \[ f + g = \frac{9x}{x-3} + \frac{7}{x+7} \] To add these, we need a common denominator, which is \((x-3)(x+7)\): \[ f + g = \frac{9x(x+7) + 7(x-3)}{(x-3)(x+7)} = \frac{9x^2 + 63x + 7x - 21}{(x-3)(x+7)} = \frac{9x^2 + 70x - 21}{(x-3)(x+7)} \] The domain excludes \( x = 3 \) and \( x = -7 \). 2. **Difference \( f - g \)**: \[ f - g = \frac{9x}{x-3} - \frac{7}{x+7} \] Using the same common denominator: \[ f - g = \frac{9x(x+7) - 7(x-3)}{(x-3)(x+7)} = \frac{9x^2 + 63x - 7x + 21}{(x-3)(x+7)} = \frac{9x^2 + 56x + 21}{(x-3)(x+7)} \] The domain is the same, excluding \( x = 3 \) and \( x = -7 \). 3. **Product \( fg \)**: \[ fg = \frac{9x}{x-3} \cdot \frac{7}{x+7} = \frac{63x}{(x-3)(x+7)} \] The domain excludes \( x = 3 \) and \( x = -7 \). 4. **Quotient \( \frac{f}{g} \)**: \[ \frac{f}{g} = \frac{\frac{9x}{x-3}}{\frac{7}{x+7}} = \frac{9x(x+7)}{7(x-3)} \] The domain excludes \( x = 3 \) and \( x = -7 \), but we must also note \( g(x) \neq 0 \) which is \( x \neq -7 \). In summary: - \( f + g = \frac{9x^2 + 70x - 21}{(x-3)(x+7)} \) - \( f - g = \frac{9x^2 + 56x + 21}{(x-3)(x+7)} \) - \( fg = \frac{63x}{(x-3)(x+7)} \) - \( \frac{f}{g} = \frac{9x(x+7)}{7(x-3)} \) The common domain for all functions is \( x \in \mathbb{R} \setminus \{3, -7\} \).