Question
upstudy study bank question image url

e. Compute the Gini index for the cases \( \mathrm{L}(\mathrm{x})=x^{p} \) and \( p=1.1,1.3,2,3,4 \)

Ask by Hills Macdonald. in the United States
Jan 27,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The Gini index for \( \mathrm{L}(x) = x^{p} \) with \( p = 1.1, 1.3, 2, 3, 4 \) is calculated as follows: - \( p = 1.1 \): Gini index ≈ 4.76% - \( p = 1.3 \): Gini index ≈ 13.04% - \( p = 2 \): Gini index ≈ 33.33% - \( p = 3 \): Gini index = 50% - \( p = 4 \): Gini index = 60% As \( p \) increases, the Gini index increases, indicating greater inequality in the distribution.

Solution

To compute the **Gini index** for the cases where the Lorenz curve is defined by \( \mathrm{L}(x) = x^{p} \) with different values of \( p \), we can follow these steps: ### **Understanding the Lorenz Curve and Gini Index** - **Lorenz Curve (\( \mathrm{L}(x) \))**: Represents the distribution of income or wealth within a population. Here, \( \mathrm{L}(x) = x^{p} \) where \( x \) ranges from 0 to 1. - **Gini Index (G)**: Measures inequality within a distribution. It ranges from 0 (perfect equality) to 1 (maximal inequality). ### **Formula for Gini Index** The Gini index can be calculated from the Lorenz curve using the following formula: \[ G = 1 - 2 \int_{0}^{1} \mathrm{L}(x) \, dx \] For \( \mathrm{L}(x) = x^{p} \), the integral becomes: \[ \int_{0}^{1} x^{p} \, dx = \frac{1}{p + 1} \] Substituting back into the formula for \( G \): \[ G = 1 - 2 \left( \frac{1}{p + 1} \right) = \frac{p - 1}{p + 1} \] ### **Calculations for Different Values of \( p \)** Let's compute the Gini index for each specified value of \( p \): 1. **For \( p = 1.1 \):** \[ G = \frac{1.1 - 1}{1.1 + 1} = \frac{0.1}{2.1} \approx 0.0476 \quad \text{or} \quad 4.76\% \] 2. **For \( p = 1.3 \):** \[ G = \frac{1.3 - 1}{1.3 + 1} = \frac{0.3}{2.3} \approx 0.1304 \quad \text{or} \quad 13.04\% \] 3. **For \( p = 2 \):** \[ G = \frac{2 - 1}{2 + 1} = \frac{1}{3} \approx 0.3333 \quad \text{or} \quad 33.33\% \] 4. **For \( p = 3 \):** \[ G = \frac{3 - 1}{3 + 1} = \frac{2}{4} = 0.5 \quad \text{or} \quad 50\% \] 5. **For \( p = 4 \):** \[ G = \frac{4 - 1}{4 + 1} = \frac{3}{5} = 0.6 \quad \text{or} \quad 60\% \] ### **Summary of Gini Index Values** | \( p \) | Gini Index (\( G \)) | Percentage | |---------|----------------------|------------| | 1.1 | \( \approx 0.0476 \) | 4.76% | | 1.3 | \( \approx 0.1304 \) | 13.04% | | 2 | \( \approx 0.3333 \) | 33.33% | | 3 | \( 0.5 \) | 50% | | 4 | \( 0.6 \) | 60% | ### **Interpretation** - **Lower \( p \)** values (\( p = 1.1, 1.3 \)) indicate **less inequality** in the distribution. - **Higher \( p \)** values (\( p = 2, 3, 4 \)) signify **greater inequality**. This relationship shows that as \( p \) increases, the distribution becomes more unequal, which is reflected by the increasing Gini index.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To compute the Gini index for the function \( L(x) = x^p \), we can use the formula for the Gini index derived from the Lorenz curve. The Gini index \( G \) is given by: \[ G = 1 - 2 \int_{0}^{1} L(x) \, dx \] For the given cases \( p=1.1, 1.3, 2, 3, 4 \): 1. **When \( p=1.1 \):** \[ G = 1 - 2 \int_0^1 x^{1.1} \, dx = 1 - 2 \left[ \frac{x^{2.1}}{2.1} \right]_0^1 = 1 - \frac{2}{2.1} = \frac{0.1}{2.1} \approx 0.0476 \] 2. **When \( p=1.3 \):** \[ G = 1 - 2 \int_0^1 x^{1.3} \, dx = 1 - 2 \left[ \frac{x^{2.3}}{2.3} \right]_0^1 = 1 - \frac{2}{2.3} = \frac{0.3}{2.3} \approx 0.1304 \] 3. **When \( p=2 \):** \[ G = 1 - 2 \int_0^1 x^2 \, dx = 1 - 2 \left[ \frac{x^3}{3} \right]_0^1 = 1 - \frac{2}{3} = \frac{1}{3} \approx 0.3333 \] 4. **When \( p=3 \):** \[ G = 1 - 2 \int_0^1 x^3 \, dx = 1 - 2 \left[ \frac{x^4}{4} \right]_0^1 = 1 - \frac{1}{2} = \frac{1}{2} = 0.5 \] 5. **When \( p=4 \):** \[ G = 1 - 2 \int_0^1 x^4 \, dx = 1 - 2 \left[ \frac{x^5}{5} \right]_0^1 = 1 - \frac{2}{5} = \frac{3}{5} = 0.6 \] In summary, the Gini indices for the cases \( p=1.1, 1.3, 2, 3, 4 \) are approximately: - \( p=1.1 \): 0.0476 - \( p=1.3 \): 0.1304 - \( p=2 \): 0.3333 - \( p=3 \): 0.5 - \( p=4 \): 0.6

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy