Use the information given about the angle \( \theta, \cot \theta=-8, \sec \theta<0,0 \leq \theta<2 \pi \), to find the exact values of the following. \( \begin{array}{l}\text { (a) } \sin (2 \theta),(b) \cos (2 \theta), \text { (c) } \sin \frac{\theta}{2} \text {, and (d) } \cos \frac{\theta}{2} \\ \text { (a) } \sin (2 \theta)=-\frac{16}{65} \text { (Type an exact answer, using radicals as needed.) } \\ \text { (b) } \cos (2 \theta)=\frac{63}{65} \text { (Type an exact answer, using radicals as needed.) } \\ \text { (c) } \sin \frac{\theta}{2}=\square \text { (Type an exact answer, using radicals as needed.) }\end{array} \) (2).
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find the exact values, we start from \( \cot \theta = -8 \). The positive cotangent value indicates that we are in the second quadrant where sine is positive and cosine is negative. This gives us: 1. From \( \cot \theta = \frac{\cos \theta}{\sin \theta} = -8 \): We can let \( \sin \theta = 1k = k \) and \( \cos \theta = -8k \). 2. Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ k^2 + (-8k)^2 = 1 \implies k^2 + 64k^2 = 1 \implies 65k^2 = 1 \implies k^2 = \frac{1}{65} \implies k = \frac{1}{\sqrt{65}}. \] Thus, we have: \[ \sin \theta = \frac{1}{\sqrt{65}}, \quad \cos \theta = -\frac{8}{\sqrt{65}}. \] Now we can find the required values: **(a)** For \( \sin (2\theta) \): \[ \sin (2\theta) = 2 \sin \theta \cos \theta = 2 \left(\frac{1}{\sqrt{65}}\right) \left(-\frac{8}{\sqrt{65}}\right) = -\frac{16}{65}. \] Thus, \( \sin (2\theta) = -\frac{16}{65}. \) **(b)** For \( \cos (2\theta) \): \[ \cos (2\theta) = \cos^2 \theta - \sin^2 \theta = \left(-\frac{8}{\sqrt{65}}\right)^2 - \left(\frac{1}{\sqrt{65}}\right)^2 = \frac{64}{65} - \frac{1}{65} = \frac{63}{65}. \] Thus, \( \cos (2\theta) = \frac{63}{65}. \) **(c)** For \( \sin \frac{\theta}{2} \): Using the half-angle formula, \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} = \sqrt{\frac{1 - (-\frac{8}{\sqrt{65}})}{2}} = \sqrt{\frac{1 + \frac{8}{\sqrt{65}}}{2}}. \] Putting the fractions under a common denominator: \[ 1 + \frac{8}{\sqrt{65}} = \frac{\sqrt{65}}{\sqrt{65}} + \frac{8}{\sqrt{65}} = \frac{\sqrt{65} + 8}{\sqrt{65}}. \] Thus, \[ \sin \frac{\theta}{2} = \sqrt{\frac{\frac{\sqrt{65} + 8}{\sqrt{65}}}{2}} = \sqrt{\frac{\sqrt{65} + 8}{2\sqrt{65}}} = \frac{\sqrt{\sqrt{65} + 8}}{\sqrt{2\sqrt{65}}}. \] This method involves evaluating radical expressions accurately. **Final Answers:** \[ (a) \sin (2\theta) = -\frac{16}{65}, \quad (b) \cos (2\theta) = \frac{63}{65}, \quad (c) \sin \frac{\theta}{2} = \frac{\sqrt{\sqrt{65}+8}}{\sqrt{2\sqrt{65}}}. \] *Note: The (d) \( \cos \frac{\theta}{2} \) can be found similarly using \( \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} \).*