Question
upstudy study bank question image url

Use the information given about the angle \( \theta, \cot \theta=-8, \sec \theta<0,0 \leq \theta<2 \pi \), to find the exact values of the following. \( \begin{array}{l}\text { (a) } \sin (2 \theta),(b) \cos (2 \theta), \text { (c) } \sin \frac{\theta}{2} \text {, and (d) } \cos \frac{\theta}{2} \\ \text { (a) } \sin (2 \theta)=-\frac{16}{65} \text { (Type an exact answer, using radicals as needed.) } \\ \text { (b) } \cos (2 \theta)=\frac{63}{65} \text { (Type an exact answer, using radicals as needed.) } \\ \text { (c) } \sin \frac{\theta}{2}=\square \text { (Type an exact answer, using radicals as needed.) }\end{array} \) (2).

Ask by Bartlett Mejia. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \sin(2\theta) = -\frac{16}{65} \), \( \cos(2\theta) = \frac{63}{65} \), \( \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{73}{2\sqrt{65}}} \), \( \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{57}{2\sqrt{65}}} \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

To find the exact values, we start from \( \cot \theta = -8 \). The positive cotangent value indicates that we are in the second quadrant where sine is positive and cosine is negative. This gives us: 1. From \( \cot \theta = \frac{\cos \theta}{\sin \theta} = -8 \): We can let \( \sin \theta = 1k = k \) and \( \cos \theta = -8k \). 2. Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ k^2 + (-8k)^2 = 1 \implies k^2 + 64k^2 = 1 \implies 65k^2 = 1 \implies k^2 = \frac{1}{65} \implies k = \frac{1}{\sqrt{65}}. \] Thus, we have: \[ \sin \theta = \frac{1}{\sqrt{65}}, \quad \cos \theta = -\frac{8}{\sqrt{65}}. \] Now we can find the required values: **(a)** For \( \sin (2\theta) \): \[ \sin (2\theta) = 2 \sin \theta \cos \theta = 2 \left(\frac{1}{\sqrt{65}}\right) \left(-\frac{8}{\sqrt{65}}\right) = -\frac{16}{65}. \] Thus, \( \sin (2\theta) = -\frac{16}{65}. \) **(b)** For \( \cos (2\theta) \): \[ \cos (2\theta) = \cos^2 \theta - \sin^2 \theta = \left(-\frac{8}{\sqrt{65}}\right)^2 - \left(\frac{1}{\sqrt{65}}\right)^2 = \frac{64}{65} - \frac{1}{65} = \frac{63}{65}. \] Thus, \( \cos (2\theta) = \frac{63}{65}. \) **(c)** For \( \sin \frac{\theta}{2} \): Using the half-angle formula, \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} = \sqrt{\frac{1 - (-\frac{8}{\sqrt{65}})}{2}} = \sqrt{\frac{1 + \frac{8}{\sqrt{65}}}{2}}. \] Putting the fractions under a common denominator: \[ 1 + \frac{8}{\sqrt{65}} = \frac{\sqrt{65}}{\sqrt{65}} + \frac{8}{\sqrt{65}} = \frac{\sqrt{65} + 8}{\sqrt{65}}. \] Thus, \[ \sin \frac{\theta}{2} = \sqrt{\frac{\frac{\sqrt{65} + 8}{\sqrt{65}}}{2}} = \sqrt{\frac{\sqrt{65} + 8}{2\sqrt{65}}} = \frac{\sqrt{\sqrt{65} + 8}}{\sqrt{2\sqrt{65}}}. \] This method involves evaluating radical expressions accurately. **Final Answers:** \[ (a) \sin (2\theta) = -\frac{16}{65}, \quad (b) \cos (2\theta) = \frac{63}{65}, \quad (c) \sin \frac{\theta}{2} = \frac{\sqrt{\sqrt{65}+8}}{\sqrt{2\sqrt{65}}}. \] *Note: The (d) \( \cos \frac{\theta}{2} \) can be found similarly using \( \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} \).*

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy