Question
upstudy study bank question image url

D. Criterio de Cauchy o de la raiz.
NOTA:
Se basa en estudiar el limite de la raiz n-ésima del n-ésimo término, es decir
La convergencia de la serie dependerá entonces del valor del dicho limite.
  • Si L < 1, la serie será Convergente.
  • L , la serie será Divergente.
  • Si , el criterio no da respuesta.

Ask by Estrada Gibson. in Equatorial Guinea
Mar 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

  • Convergent: Series 1, 2, 3, 4, 7, 8, 10
  • Divergent: Series 6
  • Inconclusive: Series 5

Solution

To analyze the convergence of the given series using the Cauchy root test, we will apply the following steps for each series:
  1. Identify the general term of the series.
  2. Calculate the -th root of the absolute value of the general term.
  3. Take the limit as approaches infinity.
  4. Determine convergence or divergence based on the limit .
Let’s analyze each series one by one.

1.

General term:
Limit calculation:
Since , the series converges.

2.

General term:
Limit calculation:
Since , the series converges.

3.

General term:
Limit calculation:
Since , the series converges.

4.

General term:
Limit calculation:
Since , the series converges.

5.

General term:
Limit calculation:
Since , the test is inconclusive.

6.

General term:
Limit calculation:
Since , the series diverges.

7.

General term:
Limit calculation:
Since , the series converges.

8.

General term: where (which converges).
Limit calculation:
Since , the series converges.

9.

This series needs clarification on the inner summation. Assuming it converges, we can analyze it similarly.

10.

General term:
Limit calculation:
Since , the series converges.

Summary of Results:

  • Convergent: (

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

El Criterio de Cauchy o de la raíz es una herramienta poderosa para estudiar la convergencia de series infinitas. Este método se basa en analizar el límite de la raíz n-ésima del n-ésimo término de una serie. En términos sencillos, si este límite se mantiene por debajo de 1, estás en un camino seguro hacia la convergencia. Pero si excede 1, ¡cuidado! La serie es divergente y probablemente te llevará a situaciones indeseadas en tus cálculos.
Cuando , las cosas se complican un poco más. En este caso, el criterio no proporciona información concluyente. Podrías estar lidiando con una serie que podría ser convergente o divergente, lo que significa que necesitarás emplear otras técnicas, como el criterio de comparación o la prueba de la integral, para desentrañar el verdadero comportamiento de tu serie. ¡Aventúrate en la exploración!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy