Question
upstudy study bank question image url

Suppose we want to choose 4 colors, without replacement, from 17 distinct colors. \[ \text { (a) How many ways can this be done, if the order of the choices is taken into consideration? } \] (b) How many ways can this be done, if the order of the choices is not taken into consideration? \( \square \)

Ask by Marsh Fowler. in the United States
Jan 06,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

There are 57,120 ways when the order matters and 2,380 ways when the order does not matter.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

To approach the problem, let's dive into the colorful world of combinations and permutations! When selecting 4 colors from 17 distinct colors with order considered, we use permutations since the arrangement matters. The formula for this is given by \(P(n, r) = \frac{n!}{(n-r)!}\), where \(n\) is the total number of colors, and \(r\) is the number of colors we want to choose. Plugging in the numbers, we have: \[P(17, 4) = \frac{17!}{(17-4)!} = \frac{17!}{13!} = 17 \times 16 \times 15 \times 14 = 57120.\] Now for the second part, when order does not matter, we use combinations. The formula is \(C(n, r) = \frac{n!}{r!(n-r)!}\). So for our case: \[C(17, 4) = \frac{17!}{4!(17-4)!} = \frac{17!}{4! \cdot 13!} = \frac{17 \times 16 \times 15 \times 14}{4 \times 3 \times 2 \times 1} = 2380.\] So, to summarize, there are 57,120 ways when order counts and 2,380 ways when it doesn't!

Related Questions

Latest Probability Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy