Answer
a) \( mn^{3} \) por \( m^{3}-2mn-4n^{2} \) = \( m^{4}n^{3}-2m^{2}n^{4}-4mn^{5} \)
b) \( 2x^{2}y \) por \( x^{a}y^{b}+x^{a-1}y^{b-1}-x^{a-2}y^{b+2} \) = \( 2x^{a+2}y^{b+1}+2x^{a+1}y^{b}-2x^{a}y^{b+3} \)
c) \( \frac{1}{2} m^{3} n^{4} \) por \( \frac{1}{3} m^{4}-m^{2} n^{2}+\frac{1}{4} n^{2} \) = \( \frac{1}{6}m^{7}n^{4}-\frac{1}{2}m^{5}n^{6}+\frac{1}{8}n^{6}m^{3} \)
d) \( \frac{2}{5} y^{2} \) por \( \frac{1}{5} x^{2}-\frac{2}{3} xy+\frac{1}{4} y^{2} \) = \( \frac{2}{25}x^{2}y^{2}-\frac{4}{15}xy^{3}+\frac{1}{10}y^{4} \)
e) \( -2 x^{2} y \) por \( x^{3}+5 x^{2} y^{2}-3 y^{4} \) = \( -2x^{5}y-10x^{4}y^{3}+6x^{2}y^{5} \)
f) \( 3 m^{2} \) por \( m^{a+5}-4 m^{a+3}-2 m^{a+1}+5 m^{a+4} \) = \( 3m^{a+7}-12m^{a+5}-6m^{a+3}+15m^{a+6} \)
g) \( -\frac{1}{4} x^{2} y^{2} z \) por \( 2 x-3 y z-5 z^{2} \) = \( -\frac{1}{2}x^{3}y^{2}z+\frac{3}{4}x^{2}y^{3}z^{2}+\frac{5}{4}x^{2}y^{2}z^{3} \)
Si necesitas más ayuda o explicaciones sobre algún paso, no dudes en preguntar.
Solution
Simplify the expression by following steps:
- step0: Multiply the terms:
\(mn^{3}\left(m^{3}-2mn-4n^{2}\right)\)
- step1: Apply the distributive property:
\(mn^{3}m^{3}-mn^{3}\times 2mn-mn^{3}\times 4n^{2}\)
- step2: Multiply the terms:
\(m^{4}n^{3}-2m^{2}n^{4}-4mn^{5}\)
Expand the expression \( -2x^{2}y(x^{3}+5x^{2}y^{2}-3y^{4}) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(-2x^{2}y\left(x^{3}+5x^{2}y^{2}-3y^{4}\right)\)
- step1: Apply the distributive property:
\(-2x^{2}yx^{3}-2x^{2}y\times 5x^{2}y^{2}-\left(-2x^{2}y\times 3y^{4}\right)\)
- step2: Multiply the terms:
\(-2x^{5}y-10x^{4}y^{3}-\left(-6x^{2}y^{5}\right)\)
- step3: Remove the parentheses:
\(-2x^{5}y-10x^{4}y^{3}+6x^{2}y^{5}\)
Expand the expression \( \frac{1}{2} m^{3} n^{4}(\frac{1}{3} m^{4}-m^{2} n^{2}+\frac{1}{4} n^{2}) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\frac{1}{2}m^{3}n^{4}\left(\frac{1}{3}m^{4}-m^{2}n^{2}+\frac{1}{4}n^{2}\right)\)
- step1: Rewrite the expression:
\(2^{-1}\left(\frac{1}{3}m^{4}-m^{2}n^{2}+\frac{1}{4}n^{2}\right)m^{3}n^{4}\)
- step2: Multiply the expression:
\(\frac{1}{24}\left(4m^{4}-12m^{2}n^{2}+3n^{2}\right)m^{3}n^{4}\)
- step3: Rearrange the terms:
\(\frac{1}{6}m^{7}n^{4}-\frac{1}{2}m^{5}n^{6}+\frac{1}{8}n^{6}m^{3}\)
Expand the expression \( \frac{2}{5} y^{2}(\frac{1}{5} x^{2}-\frac{2}{3} xy+\frac{1}{4} y^{2}) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\frac{2}{5}y^{2}\left(\frac{1}{5}x^{2}-\frac{2}{3}xy+\frac{1}{4}y^{2}\right)\)
- step1: Rewrite the expression:
\(\frac{2}{5}\left(\frac{1}{5}x^{2}-\frac{2}{3}xy+\frac{1}{4}y^{2}\right)y^{2}\)
- step2: Multiply the expression:
\(\frac{1}{150}\left(12x^{2}-40xy+15y^{2}\right)y^{2}\)
- step3: Rearrange the terms:
\(\frac{2}{25}x^{2}y^{2}-\frac{4}{15}xy^{3}+\frac{1}{10}y^{4}\)
Expand the expression \( -\frac{1}{4} x^{2}y^{2}z(2x-3yz-5z^{2}) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(-\frac{1}{4}x^{2}y^{2}z\left(2x-3yz-5z^{2}\right)\)
- step1: Apply the distributive property:
\(-\frac{1}{4}x^{2}y^{2}z\times 2x-\left(-\frac{1}{4}x^{2}y^{2}z\times 3yz\right)-\left(-\frac{1}{4}x^{2}y^{2}z\times 5z^{2}\right)\)
- step2: Multiply the terms:
\(-\frac{1}{2}x^{3}y^{2}z-\left(-\frac{3}{4}x^{2}y^{3}z^{2}\right)-\left(-\frac{5}{4}x^{2}y^{2}z^{3}\right)\)
- step3: Remove the parentheses:
\(-\frac{1}{2}x^{3}y^{2}z+\frac{3}{4}x^{2}y^{3}z^{2}+\frac{5}{4}x^{2}y^{2}z^{3}\)
Expand the expression \( 3m^{2}(m^{a+5}-4m^{a+3}-2m^{a+1}+5m^{a+4}) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(3m^{2}\left(m^{a+5}-4m^{a+3}-2m^{a+1}+5m^{a+4}\right)\)
- step1: Use the distributive property:
\(3m^{2}\times m^{a+5}+3m^{2}\left(-4m^{a+3}\right)+3m^{2}\left(-2m^{a+1}\right)+3m^{2}\times 5m^{a+4}\)
- step2: Multiply the terms:
\(3m^{a+7}+3m^{2}\left(-4m^{a+3}\right)+3m^{2}\left(-2m^{a+1}\right)+3m^{2}\times 5m^{a+4}\)
- step3: Multiply the terms:
\(3m^{a+7}-12m^{a+5}+3m^{2}\left(-2m^{a+1}\right)+3m^{2}\times 5m^{a+4}\)
- step4: Multiply the terms:
\(3m^{a+7}-12m^{a+5}-6m^{a+3}+3m^{2}\times 5m^{a+4}\)
- step5: Multiply the terms:
\(3m^{a+7}-12m^{a+5}-6m^{a+3}+15m^{a+6}\)
Expand the expression \( 2x^{2}y(x^{a}y^{b}+x^{a-1}y^{b-1}-x^{a-2}y^{b+2}) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(2x^{2}y\left(x^{a}y^{b}+x^{a-1}y^{b-1}-x^{a-2}y^{b+2}\right)\)
- step1: Use the distributive property:
\(2x^{2}yx^{a}y^{b}+2x^{2}yx^{a-1}y^{b-1}+2x^{2}y\left(-x^{a-2}y^{b+2}\right)\)
- step2: Multiply the terms:
\(2x^{a+2}y^{b+1}+2x^{2}yx^{a-1}y^{b-1}+2x^{2}y\left(-x^{a-2}y^{b+2}\right)\)
- step3: Multiply the terms:
\(2x^{a+2}y^{b+1}+2x^{a+1}y^{b}+2x^{2}y\left(-x^{a-2}y^{b+2}\right)\)
- step4: Multiply the terms:
\(2x^{a+2}y^{b+1}+2x^{a+1}y^{b}-2x^{a}y^{b+3}\)
Aquí están los resultados de las multiplicaciones solicitadas:
c) \( mn^{3} \) por \( m^{3}-2mn-4n^{2} \):
\[
m^{4}n^{3}-2m^{2}n^{4}-4mn^{5}
\]
d) \( 2x^{2}y \) por \( x^{a}y^{b}+x^{a-1}y^{b-1}-x^{a-2}y^{b+2} \):
\[
2x^{a+2}y^{b+1}+2x^{a+1}y^{b}-2x^{a}y^{b+3}
\]
e) \( \frac{1}{2} m^{3} n^{4} \) por \( \frac{1}{3} m^{4}-m^{2} n^{2}+\frac{1}{4} n^{2} \):
\[
\frac{1}{6}m^{7}n^{4}-\frac{1}{2}m^{5}n^{6}+\frac{1}{8}n^{6}m^{3}
\]
f) \( \frac{2}{5} y^{2} \) por \( \frac{1}{5} x^{2}-\frac{2}{3} xy+\frac{1}{4} y^{2} \):
\[
\frac{2}{25}x^{2}y^{2}-\frac{4}{15}xy^{3}+\frac{1}{10}y^{4}
\]
g) \( -2 x^{2} y \) por \( x^{3}+5 x^{2} y^{2}-3 y^{4} \):
\[
-2x^{5}y-10x^{4}y^{3}+6x^{2}y^{5}
\]
h) \( 3 m^{2} \) por \( m^{a+5}-4 m^{a+3}-2 m^{a+1}+5 m^{a+4} \):
\[
3m^{a+7}-12m^{a+5}-6m^{a+3}+15m^{a+6}
\]
i) \( -\frac{1}{4} x^{2} y^{2} z \) por \( 2 x-3 y z-5 z^{2} \):
\[
-\frac{1}{2}x^{3}y^{2}z+\frac{3}{4}x^{2}y^{3}z^{2}+\frac{5}{4}x^{2}y^{2}z^{3}
\]
Si necesitas más ayuda o explicaciones sobre algún paso, no dudes en preguntar.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution