Question
upstudy study bank question image url

Simplify each expression. \( 3+\frac{x+3}{6 x^{2}-18 x} \)

Ask by Ingram Murray. in the United States
Dec 09,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

\(\frac{18x^{2}-53x+3}{6x^{2}-18x}\)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

To simplify the expression \( 3+\frac{x+3}{6 x^{2}-18 x} \), we first factor the denominator. Notice that we can factor out \( 6x \): \[ 6x^2 - 18x = 6x(x - 3) \] Now, we can rewrite the original expression: \[ 3 + \frac{x + 3}{6x(x - 3)} \] To combine these two terms, we need a common denominator. The common denominator is \( 6x(x - 3) \). Rewrite \( 3 \) with this common denominator: \[ 3 = \frac{3 \cdot 6x(x - 3)}{6x(x - 3)} = \frac{18x(x - 3)}{6x(x - 3)} \] Now we can combine the two fractions: \[ \frac{18x(x - 3) + (x + 3)}{6x(x - 3)} \] Simplifying the numerator: \[ 18x(x - 3) + (x + 3) = 18x^2 - 54x + x + 3 = 18x^2 - 53x + 3 \] Thus, we have: \[ \frac{18x^2 - 53x + 3}{6x(x - 3)} \] The expression is now simplified to: \[ 3 + \frac{x + 3}{6x^2 - 18x} = \frac{18x^2 - 53x + 3}{6x(x - 3)} \]

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy