Simplio \[ \begin{array}{l}\sqrt{12}-\sqrt{20} \\ \sqrt{48}-\sqrt{80}\end{array} \]
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
Let's simplify each expression step by step! Starting with \(\sqrt{12}-\sqrt{20}\): 1. Break down the square roots: \[ \sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3} \] \[ \sqrt{20} = \sqrt{4 \cdot 5} = 2\sqrt{5} \] 2. Now, substitute back: \[ \sqrt{12}-\sqrt{20} = 2\sqrt{3} - 2\sqrt{5} \] 3. Factor out the common term: \[ = 2(\sqrt{3} - \sqrt{5}) \] Now for \(\sqrt{48}-\sqrt{80}\): 1. Break down the square roots: \[ \sqrt{48} = \sqrt{16 \cdot 3} = 4\sqrt{3} \] \[ \sqrt{80} = \sqrt{16 \cdot 5} = 4\sqrt{5} \] 2. Now, substitute back: \[ \sqrt{48}-\sqrt{80} = 4\sqrt{3} - 4\sqrt{5} \] 3. Factor out the common term: \[ = 4(\sqrt{3} - \sqrt{5}) \] So in conclusion, the simplified forms are: - \(\sqrt{12} - \sqrt{20} = 2(\sqrt{3} - \sqrt{5})\) - \(\sqrt{48} - \sqrt{80} = 4(\sqrt{3} - \sqrt{5})\)