Question
upstudy study bank question image url

derivar \( F(t)=\sqrt{4 \operatorname{sen}^{2}(t)+9 \cos ^{2}(t)} \)

Ask by Perkins Robbins. in Colombia
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La derivada de \( F(t) = \sqrt{4 \sin^{2}(t) + 9 \cos^{2}(t)} \) es: \[ F'(t) = \frac{-5 \sin(t) \cos(t)}{\sqrt{4 \sin^{2}(t) + 9 \cos^{2}(t)}} \]

Solution

Para derivar la función \( F(t) = \sqrt{4 \sin^{2}(t) + 9 \cos^{2}(t)} \), seguiremos los siguientes pasos: 1. **Identificar la función a derivar:** \[ F(t) = \sqrt{4 \sin^{2}(t) + 9 \cos^{2}(t)} \] 2. **Aplicar la regla de la cadena:** Para derivar una función de la forma \( \sqrt{g(t)} \), utilizamos: \[ F'(t) = \frac{g'(t)}{2\sqrt{g(t)}} \] donde \( g(t) = 4 \sin^{2}(t) + 9 \cos^{2}(t) \). 3. **Calcular la derivada de \( g(t) \):** \[ g(t) = 4 \sin^{2}(t) + 9 \cos^{2}(t) \] Derivando término a término: \[ g'(t) = 8 \sin(t) \cos(t) - 18 \sin(t) \cos(t) = -10 \sin(t) \cos(t) \] 4. **Sustituir \( g(t) \) y \( g'(t) \) en la expresión de \( F'(t) \):** \[ F'(t) = \frac{-10 \sin(t) \cos(t)}{2 \sqrt{4 \sin^{2}(t) + 9 \cos^{2}(t)}} \] 5. **Simplificar la expresión:** \[ F'(t) = \frac{-5 \sin(t) \cos(t)}{\sqrt{4 \sin^{2}(t) + 9 \cos^{2}(t)}} \] **Resultado final:** \[ F'(t) = \frac{-5 \sin(t) \cos(t)}{\sqrt{4 \sin^{2}(t) + 9 \cos^{2}(t)}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Para derivar la función \( F(t)=\sqrt{4 \operatorname{sen}^{2}(t)+9 \cos ^{2}(t)} \), aplicamos la regla de la cadena. La derivada de \( F \) será: \[ F'(t) = \frac{1}{2\sqrt{4 \operatorname{sen}^{2}(t)+9 \cos ^{2}(t)}} \cdot (8 \operatorname{sen}(t) \operatorname{cos}(t) - 9 \cos(t) \operatorname{sen}(t)) \] Simplificando un poco los términos: \[ F'(t) = \frac{(8 - 9 \cos^2(t)) \operatorname{sen}(t) \operatorname{cos}(t)}{\sqrt{4 \operatorname{sen}^{2}(t)+9 \cos ^{2}(t)}} \] Así que, usando la regla del cociente y la regla de la cadena, obtienes la derivada de tu función con respecto a \( t \). ¡Sigue explorando y derivando más funciones!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy