Given that \( g(x)=\frac{x-6}{x+5} \), find each of the following. \( \begin{array}{lllll}\text { a) } g(9) & \text { b) } g(6) & \text { c) } g(-5) & \text { d) } g(-13.25) & \text { e) } g(x+h)\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Extra Insights
Let's calculate each of the values for the function \( g(x) = \frac{x-6}{x+5} \): **a) \( g(9) \)** \[ g(9) = \frac{9 - 6}{9 + 5} = \frac{3}{14} \] **b) \( g(6) \)** \[ g(6) = \frac{6 - 6}{6 + 5} = \frac{0}{11} = 0 \] **c) \( g(-5) \)** Here, the function \( g(x) \) is undefined because the denominator becomes zero. \[ g(-5) = \frac{-5 - 6}{-5 + 5} = \text{undefined} \] **d) \( g(-13.25) \)** \[ g(-13.25) = \frac{-13.25 - 6}{-13.25 + 5} = \frac{-19.25}{-8.25} = \frac{19.25}{8.25} = \frac{77}{33} \quad \text{(approximately 2.33)} \] **e) \( g(x+h) \)** To find \( g(x+h) \): \[ g(x+h) = \frac{(x+h) - 6}{(x+h) + 5} = \frac{x + h - 6}{x + h + 5} = \frac{x + h - 6}{x + h + 5} \] So, to summarize, we have: - \( g(9) = \frac{3}{14} \) - \( g(6) = 0 \) - \( g(-5) = \text{undefined} \) - \( g(-13.25) = \frac{77}{33} \) - \( g(x+h) = \frac{x + h - 6}{x + h + 5} \)