Question
upstudy study bank question image url

\( \left. \begin{array} { l } { 6 x ^ { 4 } + 3 x ^ { 3 } - 6 x ^ { 2 } + 11 x - 1 } \\ { 2 x ^ { 3 } + 3 x ^ { 2 } - 6 x + 11 } \end{array} \right. \)

Ask by Evans Grant. in Ecuador
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

El resultado de la división es \(3x - 3\) con un residuo de \(21x^{2} - 40x + 32\).

Solution

Para dividir el polinomio \[ \frac{6x^{4} + 3x^{3} - 6x^{2} + 11x - 1}{2x^{3} + 3x^{2} - 6x + 11}, \] realizamos la división polinómica paso a paso: 1. **Primer término del cociente:** \[ \frac{6x^{4}}{2x^{3}} = 3x \] 2. **Multiplicamos el divisor por \(3x\) y restamos del dividendo:** \[ 3x \cdot (2x^{3} + 3x^{2} - 6x + 11) = 6x^{4} + 9x^{3} - 18x^{2} + 33x \] \[ \begin{align*} & (6x^{4} + 3x^{3} - 6x^{2} + 11x - 1) \\ - & (6x^{4} + 9x^{3} - 18x^{2} + 33x) \\ = & -6x^{3} + 12x^{2} - 22x - 1 \end{align*} \] 3. **Segundo término del cociente:** \[ \frac{-6x^{3}}{2x^{3}} = -3 \] 4. **Multiplicamos el divisor por \(-3\) y restamos del resultado anterior:** \[ -3 \cdot (2x^{3} + 3x^{2} - 6x + 11) = -6x^{3} - 9x^{2} + 18x - 33 \] \[ \begin{align*} & (-6x^{3} + 12x^{2} - 22x - 1) \\ - & (-6x^{3} - 9x^{2} + 18x - 33) \\ = & 21x^{2} - 40x + 32 \end{align*} \] Como el grado del residuo (\(21x^{2} - 40x + 32\)) es menor que el grado del divisor (\(2x^{3} + 3x^{2} - 6x + 11\)), concluimos la división. **Resultado final:** \[ \frac{6x^{4} + 3x^{3} - 6x^{2} + 11x - 1}{2x^{3} + 3x^{2} - 6x + 11} = 3x - 3 + \frac{21x^{2} - 40x + 32}{2x^{3} + 3x^{2} - 6x + 11} \] **En resumen:** - **Cociente:** \(3x - 3\) - **Residuo:** \(21x^{2} - 40x + 32\) Por lo tanto, la expresión original se puede expresar como: \[ 3x - 3 + \frac{21x^{2} - 40x + 32}{2x^{3} + 3x^{2} - 6x + 11} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Did you know that polynomials can be expressed in different forms? In this case, both expressions are polynomials of varying degrees which can be graphed on a coordinate plane. The first polynomial is of degree 4, while the second is of degree 3. Exploring their graphs provides insight into their behavior, roots, and intercepts, making them a great educational tool for demonstrating concepts like maxima and minima! When tackling polynomial expressions, one common pitfall is forgetting to keep track of signs during simplifications. Always double-check each term as you combine them! Also, when factoring or finding roots, it's easy to overlook the Rational Root Theorem, which can help identify potential rational roots efficiently. So, keep those strategies in mind to avoid unnecessary confusion!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy