Question
1. What is the value of the expression below? \[ \frac{3^{2}\left(2^{3}+4\right)}{2^{2}} \]
Ask by Ruiz Love. in the United States
Jan 24,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
El valor de la expresión es 27.
Solution
Para calcular el valor de la expresión:
\[
\frac{3^{2}\left(2^{3}+4\right)}{2^{2}}
\]
seguimos los siguientes pasos:
1. Calculamos \(3^{2}\):
\[
3^{2} = 9
\]
2. Calculamos \(2^{3}\) y luego sumamos 4:
\[
2^{3} = 8 \\
8 + 4 = 12
\]
3. Multiplicamos los resultados del paso 1 y 2:
\[
9 \times 12 = 108
\]
4. Calculamos \(2^{2}\):
\[
2^{2} = 4
\]
5. Dividimos el numerador entre el denominador:
\[
\frac{108}{4} = 27
\]
**Por lo tanto, el valor de la expresión es 27.**
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Extra Insights
Let's break down the expression step by step to find its value. First, calculate inside the parentheses: \[ 2^{3} + 4 = 8 + 4 = 12 \] Next, substitute this back into the expression: \[ \frac{3^{2}(12)}{2^{2}} \] Now calculate \(3^{2}\): \[ 3^{2} = 9 \] So the expression becomes: \[ \frac{9(12)}{2^{2}} \] Now calculate \(2^{2}\): \[ 2^{2} = 4 \] Now substitute this back: \[ \frac{9 \times 12}{4} = \frac{108}{4} \] Finally, divide: \[ 108 \div 4 = 27 \] Therefore, the value of the expression is: \[ \boxed{27} \]