Answer
1. 7
2. 6
3. 1
4. 9.75
5. 1
6. 3
7. 1.111...
8. 1
Solution
Calculate the value by following steps:
- step0: Calculate:
\(12-97-8+100\)
- step1: Calculate:
\(7\)
Calculate or simplify the expression \( 17-83+82-10 \).
Calculate the value by following steps:
- step0: Calculate:
\(17-83+82-10\)
- step1: Calculate:
\(6\)
Calculate or simplify the expression \( 3.5-8+0.5+5 \).
Calculate the value by following steps:
- step0: Calculate:
\(3.5-8+0.5+5\)
- step1: Calculate:
\(1\)
Calculate or simplify the expression \( 8*(5/7)*(1/4)*(7/10) \).
Calculate the value by following steps:
- step0: Calculate:
\(8\times \frac{5}{7}\times \frac{1}{4}\times \frac{7}{10}\)
- step1: Reduce the fraction:
\(8\times 5\times \frac{1}{4}\times \frac{1}{10}\)
- step2: Multiply the terms:
\(40\times \frac{1}{4}\times \frac{1}{10}\)
- step3: Multiply the terms:
\(10\times \frac{1}{10}\)
- step4: Reduce the fraction:
\(1\times 1\)
- step5: Multiply the terms:
\(1\)
Calculate or simplify the expression \( (16/9)*(14/3)*(9/16)*(9/14) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{16}{9}\times \frac{14}{3}\times \frac{9}{16}\times \frac{9}{14}\)
- step1: Reduce the fraction:
\(\frac{1}{9}\times \frac{14}{3}\times 9\times \frac{9}{14}\)
- step2: Reduce the fraction:
\(1\times \frac{14}{3}\times 1\times \frac{9}{14}\)
- step3: Reduce the fraction:
\(1\times \frac{1}{3}\times 1\times 9\)
- step4: Multiply the terms:
\(\frac{1}{3}\times 1\times 9\)
- step5: Multiply the terms:
\(\frac{1}{3}\times 9\)
- step6: Reduce the numbers:
\(1\times 3\)
- step7: Simplify:
\(3\)
Calculate or simplify the expression \( (1/4)*(8-8/3-4/3) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{1}{4}\left(8-\frac{8}{3}-\frac{4}{3}\right)\)
- step1: Subtract the numbers:
\(\frac{1}{4}\times 4\)
- step2: Reduce the numbers:
\(1\times 1\)
- step3: Simplify:
\(1\)
Calculate or simplify the expression \( (1/3)*(9-6+1/3) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{1}{3}\left(9-6+\frac{1}{3}\right)\)
- step1: Calculate:
\(\frac{1}{3}\times \frac{10}{3}\)
- step2: Multiply the fractions:
\(\frac{10}{3\times 3}\)
- step3: Multiply:
\(\frac{10}{9}\)
Calculate or simplify the expression \( 26/3-1/4+1/3+1 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{26}{3}-\frac{1}{4}+\frac{1}{3}+1\)
- step1: Reduce fractions to a common denominator:
\(\frac{26\times 4}{3\times 4}-\frac{3}{4\times 3}+\frac{4}{3\times 4}+\frac{3\times 4}{3\times 4}\)
- step2: Multiply the numbers:
\(\frac{26\times 4}{12}-\frac{3}{4\times 3}+\frac{4}{3\times 4}+\frac{3\times 4}{3\times 4}\)
- step3: Multiply the numbers:
\(\frac{26\times 4}{12}-\frac{3}{12}+\frac{4}{3\times 4}+\frac{3\times 4}{3\times 4}\)
- step4: Multiply the numbers:
\(\frac{26\times 4}{12}-\frac{3}{12}+\frac{4}{12}+\frac{3\times 4}{3\times 4}\)
- step5: Multiply the numbers:
\(\frac{26\times 4}{12}-\frac{3}{12}+\frac{4}{12}+\frac{3\times 4}{12}\)
- step6: Transform the expression:
\(\frac{26\times 4-3+4+3\times 4}{12}\)
- step7: Multiply the numbers:
\(\frac{104-3+4+3\times 4}{12}\)
- step8: Multiply the numbers:
\(\frac{104-3+4+12}{12}\)
- step9: Calculate:
\(\frac{117}{12}\)
- step10: Reduce the fraction:
\(\frac{39}{4}\)
Let's calculate each expression step by step using the properties of arithmetic.
1. **Expression:** \( 12 - 97 - 8 + 100 \)
- Rearranging using the associative property:
\[
(12 + 100) - (97 + 8) = 112 - 105 = 7
\]
**Result:** \( 7 \)
2. **Expression:** \( 17 - 83 + 82 - 10 \)
- Rearranging using the associative property:
\[
(17 + 82) - (83 + 10) = 99 - 93 = 6
\]
**Result:** \( 6 \)
3. **Expression:** \( 3 \frac{1}{2} - 8 + \frac{1}{2} + 5 \)
- Converting mixed number to improper fraction:
\[
\frac{7}{2} - 8 + \frac{1}{2} + 5 = \frac{7}{2} - \frac{16}{2} + \frac{1}{2} + \frac{10}{2}
\]
- Combining:
\[
\frac{7 - 16 + 1 + 10}{2} = \frac{2}{2} = 1
\]
**Result:** \( 1 \)
4. **Expression:** \( \frac{26}{3} - \frac{1}{4} + \frac{1}{3} + 1 \)
- Finding a common denominator (12):
\[
\frac{104}{12} - \frac{3}{12} + \frac{4}{12} + \frac{12}{12} = \frac{104 - 3 + 4 + 12}{12} = \frac{117}{12} = \frac{39}{4} \text{ or } 9 \frac{3}{4} \text{ or } 9.75
\]
**Result:** \( \frac{39}{4} \)
5. **Expression:** \( 8 \times \frac{5}{7} \times \frac{1}{4} \times \frac{7}{10} \)
- Rearranging and simplifying:
\[
8 \times \frac{5 \times 7}{7 \times 4 \times 10} = 8 \times \frac{5}{40} = 1
\]
**Result:** \( 1 \)
6. **Expression:** \( \frac{16}{9} \times \frac{14}{3} \times \frac{9}{16} \times \frac{9}{14} \)
- Rearranging and simplifying:
\[
\frac{16 \times 14 \times 9 \times 9}{9 \times 16 \times 3 \times 14} = \frac{81}{27} = 3
\]
**Result:** \( 3 \)
7. **Expression:** \( \frac{1}{3}(9 - 6 + \frac{1}{3}) \)
- Simplifying inside the parentheses:
\[
9 - 6 + \frac{1}{3} = 3 + \frac{1}{3} = \frac{9}{3} + \frac{1}{3} = \frac{10}{3}
\]
- Now multiplying:
\[
\frac{1}{3} \times \frac{10}{3} = \frac{10}{9} \text{ or } 1 \frac{1}{9} \text{ or } 1.1\dot{1}
\]
**Result:** \( \frac{10}{9} \)
8. **Expression:** \( \frac{1}{4}(8 - \frac{8}{3} - \frac{4}{3}) \)
- Finding a common denominator (3):
\[
8 = \frac{24}{3}, \text{ so } \frac{24}{3} - \frac{8}{3} - \frac{4}{3} = \frac{24 - 8 - 4}{3} = \frac{12}{3} = 4
\]
- Now multiplying:
\[
\frac{1}{4} \times 4 = 1
\]
**Result:** \( 1 \)
### Summary of Results:
1. \( 7 \)
2. \( 6 \)
3. \( 1 \)
4. \( \frac{39}{4} \)
5. \( 1 \)
6. \( 3 \)
7. \( \frac{10}{9} \)
8. \( 1 \)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution