Question
выраэсения: \( (x-3)^{2}-(x-7)(x+1) \) при \( x=1,5 \)
Ask by Whittaker Watson. in Russia
Sep 26,2024
Real Tutor Solution
Tutor-Verified Answer
Answer
При \( x=1.5 \) выражение равно 16.
Solution
Substitute \( x=1.5 \) into the expression \( (x-3)^{2}-(x-7)(x+1) \).
Evaluate the expression by following steps:
- step0: Evaluate:
\(\left(x-3\right)^{2}-\left(x-7\right)\left(x+1\right)\)
- step1: Substitute:
\(\left(1.5-3\right)^{2}-\left(1.5-7\right)\left(1.5+1\right)\)
- step2: Subtract the numbers:
\(\left(-1.5\right)^{2}-\left(1.5-7\right)\left(1.5+1\right)\)
- step3: Subtract the numbers:
\(\left(-1.5\right)^{2}-\left(-5.5\right)\left(1.5+1\right)\)
- step4: Remove the parentheses:
\(\left(-1.5\right)^{2}-\left(-5.5\left(1.5+1\right)\right)\)
- step5: Add the numbers:
\(\left(-1.5\right)^{2}-\left(-5.5\times 2.5\right)\)
- step6: Convert the expressions:
\(\left(-\frac{3}{2}\right)^{2}-\left(-5.5\times 2.5\right)\)
- step7: Multiply the numbers:
\(\left(-\frac{3}{2}\right)^{2}-\left(-13.75\right)\)
- step8: Rewrite the expression:
\(\frac{3^{2}}{2^{2}}-\left(-13.75\right)\)
- step9: Remove the parentheses:
\(\frac{3^{2}}{2^{2}}+13.75\)
- step10: Evaluate the power:
\(\frac{9}{4}+13.75\)
- step11: Convert the expressions:
\(\frac{9}{4}+\frac{55}{4}\)
- step12: Transform the expression:
\(\frac{9+55}{4}\)
- step13: Add the numbers:
\(\frac{64}{4}\)
- step14: Divide the terms:
\(16\)
При \( x=1.5 \) выражение \( (x-3)^{2}-(x-7)(x+1) \) равно 16.
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution