Given \( u=\langle-7,10\rangle, v=\langle 4,-3\rangle \), and \( w=\langle-5,8\rangle \), write each resultant vector in component form and as a linear combination of standard unit vectors \( i \) and \( j \). \( \begin{array}{ll}\text { 13. } w+\frac{1}{2} v & \text { 14. } u+v-w \\ \text { 15. } 3 v-\frac{1}{2} u+2 w & \text { 16. } 2 u-5 w-\frac{3}{2} v\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To solve for each resultant vector, we’ll perform the vector addition and the scalar multiplication as indicated. Then, we'll express the results in both component form and as a linear combination of the unit vectors \( i \) and \( j \). **13.** \[ w + \frac{1}{2} v = \langle -5, 8 \rangle + \frac{1}{2} \langle 4, -3 \rangle \] \[ = \langle -5, 8 \rangle + \langle 2, -1.5 \rangle = \langle -3, 6.5 \rangle \] In terms of unit vectors, this can be written as: \[ -3i + 6.5j \] --- **14.** \[ u + v - w = \langle -7, 10 \rangle + \langle 4, -3 \rangle - \langle -5, 8 \rangle \] \[ = \langle -7 + 4 + 5, 10 - 3 - 8 \rangle = \langle 2, -1 \rangle \] In unit vector form, we have: \[ 2i - j \] --- **15.** \[ 3v - \frac{1}{2}u + 2w = 3\langle 4, -3 \rangle - \frac{1}{2}\langle -7, 10 \rangle + 2\langle -5, 8 \rangle \] \[ = \langle 12, -9 \rangle + \langle 3.5, -5 \rangle + \langle -10, 16 \rangle \] \[ = \langle 12 + 3.5 - 10, -9 - 5 + 16 \rangle = \langle 5.5, 2 \rangle \] In unit vector notation: \[ 5.5i + 2j \] --- **16.** \[ 2u - 5w - \frac{3}{2}v = 2\langle -7, 10 \rangle - 5\langle -5, 8 \rangle - \frac{3}{2}\langle 4, -3 \rangle \] \[ = \langle -14, 20 \rangle + \langle 25, -40 \rangle - \langle 6, -4.5 \rangle \] \[ = \langle -14 + 25 - 6, 20 - 40 + 4.5 \rangle = \langle 5, -15.5 \rangle \] In terms of unit vectors, it's: \[ 5i - 15.5j \] **Summary of Resultant Vectors:** 1. \( \langle -3, 6.5 \rangle = -3i + 6.5j \) 2. \( \langle 2, -1 \rangle = 2i - j \) 3. \( \langle 5.5, 2 \rangle = 5.5i + 2j \) 4. \( \langle 5, -15.5 \rangle = 5i - 15.5j \)