Question
upstudy study bank question image url

Given \( u=\langle-7,10\rangle, v=\langle 4,-3\rangle \), and \( w=\langle-5,8\rangle \), write each resultant vector in component form and as a linear combination of standard unit vectors \( i \) and \( j \). \( \begin{array}{ll}\text { 13. } w+\frac{1}{2} v & \text { 14. } u+v-w \\ \text { 15. } 3 v-\frac{1}{2} u+2 w & \text { 16. } 2 u-5 w-\frac{3}{2} v\end{array} \)

Ask by Simmons Erickson. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. \( w + \frac{1}{2} v = \langle -3, 6.5 \rangle = -3\mathbf{i} + 6.5\mathbf{j} \) 2. \( u + v - w = \langle 2, -1 \rangle = 2\mathbf{i} - 1\mathbf{j} \) 3. \( 3v - \frac{1}{2} u + 2w = \langle 5.5, 2 \rangle = 5.5\mathbf{i} + 2\mathbf{j} \) 4. \( 2u - 5w - \frac{3}{2} v = \langle 5, -15.5 \rangle = 5\mathbf{i} - 15.5\mathbf{j} \)

Solution

To solve the problem, we will calculate each resultant vector step by step, expressing them in component form and as a linear combination of the standard unit vectors \( \mathbf{i} \) and \( \mathbf{j} \). ### Given Vectors - \( u = \langle -7, 10 \rangle \) - \( v = \langle 4, -3 \rangle \) - \( w = \langle -5, 8 \rangle \) ### 13. \( w + \frac{1}{2} v \) 1. Calculate \( \frac{1}{2} v \): \[ \frac{1}{2} v = \frac{1}{2} \langle 4, -3 \rangle = \langle 2, -1.5 \rangle \] 2. Add \( w \) and \( \frac{1}{2} v \): \[ w + \frac{1}{2} v = \langle -5, 8 \rangle + \langle 2, -1.5 \rangle = \langle -5 + 2, 8 - 1.5 \rangle = \langle -3, 6.5 \rangle \] 3. Express in terms of \( \mathbf{i} \) and \( \mathbf{j} \): \[ -3\mathbf{i} + 6.5\mathbf{j} \] ### 14. \( u + v - w \) 1. Add \( u \) and \( v \): \[ u + v = \langle -7, 10 \rangle + \langle 4, -3 \rangle = \langle -7 + 4, 10 - 3 \rangle = \langle -3, 7 \rangle \] 2. Subtract \( w \): \[ u + v - w = \langle -3, 7 \rangle - \langle -5, 8 \rangle = \langle -3 + 5, 7 - 8 \rangle = \langle 2, -1 \rangle \] 3. Express in terms of \( \mathbf{i} \) and \( \mathbf{j} \): \[ 2\mathbf{i} - 1\mathbf{j} \] ### 15. \( 3v - \frac{1}{2} u + 2w \) 1. Calculate \( 3v \): \[ 3v = 3 \langle 4, -3 \rangle = \langle 12, -9 \rangle \] 2. Calculate \( \frac{1}{2} u \): \[ \frac{1}{2} u = \frac{1}{2} \langle -7, 10 \rangle = \langle -3.5, 5 \rangle \] 3. Calculate \( 2w \): \[ 2w = 2 \langle -5, 8 \rangle = \langle -10, 16 \rangle \] 4. Combine all: \[ 3v - \frac{1}{2} u + 2w = \langle 12, -9 \rangle - \langle -3.5, 5 \rangle + \langle -10, 16 \rangle \] \[ = \langle 12 + 3.5 - 10, -9 - 5 + 16 \rangle = \langle 5.5, 2 \rangle \] 5. Express in terms of \( \mathbf{i} \) and \( \mathbf{j} \): \[ 5.5\mathbf{i} + 2\mathbf{j} \] ### 16. \( 2u - 5w - \frac{3}{2} v \) 1. Calculate \( 2u \): \[ 2u = 2 \langle -7, 10 \rangle = \langle -14, 20 \rangle \] 2. Calculate \( 5w \): \[ 5w = 5 \langle -5, 8 \rangle = \langle -25, 40 \rangle \] 3. Calculate \( \frac{3}{2} v \): \[ \frac{3}{2} v = \frac{3}{2} \langle 4, -3 \rangle = \langle 6, -4.5 \rangle \] 4. Combine all: \[ 2u - 5w - \frac{3}{2} v = \langle -14, 20 \rangle - \langle -25, 40 \rangle - \langle 6, -4.5 \rangle \] \[ = \langle -14 + 25 - 6, 20 - 40 + 4.5 \rangle = \langle 5, -15.5 \rangle \] 5. Express in terms of \( \mathbf{i} \) and \( \mathbf{j} \): \[ 5\mathbf{i} - 15.5\mathbf{j} \] ### Summary of Results 1. \( w + \frac{1}{2} v = \langle -3, 6.5 \rangle = -3\mathbf{i} + 6.5\mathbf{j} \) 2. \( u + v - w = \langle 2, -1 \rangle = 2\mathbf{i} - 1\mathbf{j} \) 3. \( 3v - \frac{1}{2} u + 2w = \langle 5.5, 2 \rangle = 5.5\mathbf{i} + 2\mathbf{j} \) 4. \( 2u - 5w - \frac{3}{2} v = \langle 5, -15.5 \rangle = 5\mathbf{i} - 15.5\mathbf{j} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve for each resultant vector, we’ll perform the vector addition and the scalar multiplication as indicated. Then, we'll express the results in both component form and as a linear combination of the unit vectors \( i \) and \( j \). **13.** \[ w + \frac{1}{2} v = \langle -5, 8 \rangle + \frac{1}{2} \langle 4, -3 \rangle \] \[ = \langle -5, 8 \rangle + \langle 2, -1.5 \rangle = \langle -3, 6.5 \rangle \] In terms of unit vectors, this can be written as: \[ -3i + 6.5j \] --- **14.** \[ u + v - w = \langle -7, 10 \rangle + \langle 4, -3 \rangle - \langle -5, 8 \rangle \] \[ = \langle -7 + 4 + 5, 10 - 3 - 8 \rangle = \langle 2, -1 \rangle \] In unit vector form, we have: \[ 2i - j \] --- **15.** \[ 3v - \frac{1}{2}u + 2w = 3\langle 4, -3 \rangle - \frac{1}{2}\langle -7, 10 \rangle + 2\langle -5, 8 \rangle \] \[ = \langle 12, -9 \rangle + \langle 3.5, -5 \rangle + \langle -10, 16 \rangle \] \[ = \langle 12 + 3.5 - 10, -9 - 5 + 16 \rangle = \langle 5.5, 2 \rangle \] In unit vector notation: \[ 5.5i + 2j \] --- **16.** \[ 2u - 5w - \frac{3}{2}v = 2\langle -7, 10 \rangle - 5\langle -5, 8 \rangle - \frac{3}{2}\langle 4, -3 \rangle \] \[ = \langle -14, 20 \rangle + \langle 25, -40 \rangle - \langle 6, -4.5 \rangle \] \[ = \langle -14 + 25 - 6, 20 - 40 + 4.5 \rangle = \langle 5, -15.5 \rangle \] In terms of unit vectors, it's: \[ 5i - 15.5j \] **Summary of Resultant Vectors:** 1. \( \langle -3, 6.5 \rangle = -3i + 6.5j \) 2. \( \langle 2, -1 \rangle = 2i - j \) 3. \( \langle 5.5, 2 \rangle = 5.5i + 2j \) 4. \( \langle 5, -15.5 \rangle = 5i - 15.5j \)

Related Questions

Latest Other Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy