12. Find the square roots of the complex number \( 3-4 i \), leaving your answer in rectangular form
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To find the square roots of the complex number \( 3 - 4i \), we can express it in polar form. First, calculate the modulus \( r \) using \( r = \sqrt{x^2 + y^2} \), where \( x = 3 \) and \( y = -4 \): \[ r = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5. \] Next, find the argument \( \theta \): \[ \theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{-4}{3}\right) \approx -0.93 \text{ radians (or in degrees, about } -53.13°). \] Thus, in polar form, \( 3 - 4i = 5 \text{cis}(-0.93) \), where \( \text{cis}(\theta) \) is shorthand for \( \cos(\theta) + i \sin(\theta) \). Now, to find the square roots, we use the formula for square roots in polar form: \[ z = \sqrt{r} \text{cis}\left(\frac{\theta + 2k\pi}{2}\right) \text{ for } k = 0, 1. \] So, \( \sqrt{5} = \sqrt{5} \), and we have: 1. For \( k = 0 \): \[ z_1 = \sqrt{5} \text{cis}\left(\frac{-0.93}{2}\right) \approx \sqrt{5} \text{cis}(-0.465) \] Which gives us \( z_1 \approx \sqrt{5} \left( \cos(-0.465) + i \sin(-0.465) \right) \). 2. For \( k = 1 \): \[ z_2 = \sqrt{5} \text{cis}\left(\frac{-0.93 + 2\pi}{2}\right) \approx \sqrt{5} \text{cis}\left(\frac{5.821}{2}\right) = \sqrt{5} \text{cis}(2.9105) \] Leading to \( z_2 \approx \sqrt{5} \left( \cos(2.9105) + i \sin(2.9105) \right) \). Finally, after calculating the cosines and sines, you’ll find the roots in rectangular form: 1. \( z_1 \approx 1.77 - 2.68i \) 2. \( z_2 \approx -1.77 + 2.68i \) And there you have it, the square roots of the complex number \( 3 - 4i \)!