26) \( \frac{2 x^{4} y^{-4} z^{-3}}{3 x^{2} y^{-3} z^{4}} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To simplify the expression \( \frac{2 x^{4} y^{-4} z^{-3}}{3 x^{2} y^{-3} z^{4}} \), we can divide the coefficients and simplify the variables separately. Start with the coefficients: \( \frac{2}{3} \). Next, simplify the variable parts: - For \( x \), \( \frac{x^{4}}{x^{2}} = x^{4-2} = x^{2} \). - For \( y \), \( \frac{y^{-4}}{y^{-3}} = y^{-4 - (-3)} = y^{-4 + 3} = y^{-1} \). - For \( z \), \( \frac{z^{-3}}{z^{4}} = z^{-3 - 4} = z^{-7} \). Now, combining everything together, we get: \[ \frac{2}{3} x^{2} y^{-1} z^{-7} \] This can also be expressed as: \[ \frac{2 x^{2}}{3 y z^{7}} \] Thus, the final simplified expression is: \[ \frac{2 x^{2}}{3 y z^{7}} \]