Answer
**HCF and LCM for the Given Numbers:**
- **a) 48, 56, 72**
- **HCF:** 8
- **LCM:** 1008
- **b) 198, 360**
- **HCF:** 18
- **LCM:** 3960
Solution
Sure, let's find the **HCF (Highest Common Factor)** and **LCM (Least Common Multiple)** for each set of numbers provided.
---
### **a) For the numbers 48, 56, and 72**
#### **Prime Factorization:**
1. **48**
- \(48 = 2^4 \times 3^1\)
2. **56**
- \(56 = 2^3 \times 7^1\)
3. **72**
- \(72 = 2^3 \times 3^2\)
#### **Finding the HCF:**
- **Identify common prime factors** across all three numbers.
- The only common prime factor is **2**.
- **Minimum power of 2** among the numbers is \(2^3\).
\[
\text{HCF} = 2^3 = 8
\]
#### **Finding the LCM:**
- **Take the highest power** of all prime factors present.
- Prime factors involved: 2, 3, and 7.
\[
\begin{align*}
\text{LCM} &= 2^{4} \times 3^{2} \times 7^{1} \\
&= 16 \times 9 \times 7 \\
&= 144 \times 7 \\
&= 1008
\end{align*}
\]
**_Result for part a:_**
- **HCF = 8**
- **LCM = 1008**
---
### **b) For the numbers 198 and 360**
#### **Prime Factorization:**
1. **198**
- \(198 = 2^1 \times 3^2 \times 11^1\)
2. **360**
- \(360 = 2^3 \times 3^2 \times 5^1\)
#### **Finding the HCF:**
- **Identify common prime factors** between the two numbers.
- Common primes are **2** and **3**.
- **Minimum powers**:
- \(2^1\) (from 198)
- \(3^2\) (common)
\[
\text{HCF} = 2^1 \times 3^2 = 2 \times 9 = 18
\]
#### **Finding the LCM:**
- **Take the highest power** of all prime factors present.
- Prime factors involved: 2, 3, 5, and 11.
\[
\begin{align*}
\text{LCM} &= 2^{3} \times 3^{2} \times 5^{1} \times 11^{1} \\
&= 8 \times 9 \times 5 \times 11 \\
&= 72 \times 5 \times 11 \\
&= 360 \times 11 \\
&= 3960
\end{align*}
\]
**_Result for part b:_**
- **HCF = 18**
- **LCM = 3960**
---
**Summary:**
- **a) 48, 56, 72**
- **HCF:** 8
- **LCM:** 1008
- **b) 198, 360**
- **HCF:** 18
- **LCM:** 3960
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution