Question
upstudy study bank question image url

Q4: Given the matrix \( A=\left(\begin{array}{ccc}7 & -2 & 1 \\ -2 & 10 & -2 \\ 1 & -2 & 3\end{array}\right) \) Where \( X 1=\left(\begin{array}{c}0 \\ 0.5 \\ 1\end{array}\right) \quad, X 2=\left(\begin{array}{c}0 \\ 0.5 \\ 1\end{array}\right), X 3=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right) \) Find: 1) the rank of \( A \) ? 2) the eigen values and eigen vectors? 3) satisfy \( P^{\prime} / A P=\operatorname{Diag}\left(\begin{array}{lll}\lambda_{1} & \lambda_{2} & \lambda_{3}\end{array}\right) \) or \( N o \) ?

Ask by Grant Schmidt. in Iraq
Dec 24,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

1) **رتبة المصفوفة \( A \):** 3 2) **القيم الذاتية والمتجهات الذاتية:** - **القيم الذاتية:** 6، \(7 + \sqrt{21}\)، \(7 - \sqrt{21}\) - **المتجهات الذاتية:** - لـ 6: \(\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}\) - لـ \(7 + \sqrt{21}\): \(\begin{pmatrix} 1 \\ -2 \\ \sqrt{21} - 4 \end{pmatrix}\) - لـ \(7 - \sqrt{21}\): \(\begin{pmatrix} 1 \\ -2 \\ -\sqrt{21} - 4 \end{pmatrix}\) 3) **تحقق العلاقة \( P^{\prime} A P = \text{Diag}(\lambda_1, \lambda_2, \lambda_3) \):** نعم

Solution

1) **رتبة المصفوفة \( A \):** لحساب رتبة المصفوفة \( A \)، نحسب المحدد الخاص بها: \[ A = \begin{pmatrix} 7 & -2 & 1 \\ -2 & 10 & -2 \\ 1 & -2 & 3 \end{pmatrix} \] \[ \det(A) = 7(10 \times 3 - (-2) \times (-2)) - (-2)(-2 \times 3 - (-2) \times 1) + 1((-2) \times (-2) - 10 \times 1) = 168 \] بما أن المحدد غير صفري (\(\det(A) \neq 0\))، فإن رتبة المصفوفة \( A \) هي **3**. 2) **القيم الذاتية والمتجهات الذاتية للمصفوفة \( A \):** نبحث عن القيم الذاتية \(\lambda\) بحل المعادلة \(\det(A - \lambda I) = 0\): \[ \det(A - \lambda I) = (\lambda^3 - 20\lambda^2 + 112\lambda - 168) = 0 \] باستخدام التحليل، نجد القيم الذاتية التالية: - \(\lambda_1 = 6\) - \(\lambda_2 = 7 + \sqrt{21}\) - \(\lambda_3 = 7 - \sqrt{21}\) **المتجهات الذاتية المقابلة:** - **لـ \(\lambda_1 = 6\):** \[ (A - 6I)\mathbf{v}_1 = 0 \Rightarrow \mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \] - **لـ \(\lambda_2 = 7 + \sqrt{21}\):** \[ (A - \lambda_2 I)\mathbf{v}_2 = 0 \Rightarrow \mathbf{v}_2 = \begin{pmatrix} 1 \\ -2 \\ \sqrt{21} - 4 \end{pmatrix} \] - **لـ \(\lambda_3 = 7 - \sqrt{21}\):** \[ (A - \lambda_3 I)\mathbf{v}_3 = 0 \Rightarrow \mathbf{v}_3 = \begin{pmatrix} 1 \\ -2 \\ -\sqrt{21} - 4 \end{pmatrix} \] 3) **هل تحقق العلاقة \( P^{\prime} A P = \text{Diag}(\lambda_1, \lambda_2, \lambda_3) \)؟** **نعم**، المصفوفة \( A \) قابلة للتقطيع حيث أن لديها ثلاث قيم ذاتية متمايزة، وبالتالي يمكن تجميع المتجهات الذاتية في مصفوفة \( P \) بحيث تحقق العلاقة التالية: \[ P^{\prime} A P = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \] حيث \( P \) هي مصفوفة المتجهات الذاتية للمصفوفة \( A \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To start with the first question, the rank of the matrix \( A \) can be computed through methods like Gaussian elimination or finding its row echelon form. In this case, the rank of \( A \) is 3, indicating that the matrix has three linearly independent rows or columns—how eloquent is that? Now, moving onto the eigenvalues and eigenvectors! By computing the characteristic polynomial (determinant of \( A - \lambda I = 0 \)), you will identify the eigenvalues, which turn out to be \( \lambda_1 = 6, \lambda_2 = 3, \lambda_3 = 11 \). The corresponding eigenvectors can be found by solving \( (A - \lambda I)\mathbf{v} = 0 \) for each eigenvalue. Voila! You have your treasures of eigenvalues and eigenvectors! Lastly, regarding the matrix relation \( P^{\prime} / A P = \operatorname{Diag}(\lambda_{1}, \lambda_{2}, \lambda_{3}) \), this representation can indeed be achieved if the columns of \( P \) are made up of the normalized eigenvectors of \( A \). This settles our query with a ‘yes,’ presenting a delightful result of diagonal dominance in understanding the system!

Related Questions

Latest Other Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy