1) \( \frac{\left(2 a^{3} b^{4}\right)^{-5}}{\left(64 a^{-3} b^{2}\right)^{-1}} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To simplify the given expression, we'll start by rewriting it step by step: First, let's simplify the numerator: \((2 a^{3} b^{4})^{-5} = \frac{1}{(2 a^{3} b^{4})^{5}} = \frac{1}{2^{5} a^{15} b^{20}} = \frac{1}{32 a^{15} b^{20}}\). Now, simplify the denominator: \((64 a^{-3} b^{2})^{-1} = \frac{1}{64 a^{-3} b^{2}} = \frac{1}{64} a^{3} b^{-2}\). Now, we can rewrite the original expression as: \[ \frac{\frac{1}{32 a^{15} b^{20}}}{\frac{1}{64} a^{3} b^{-2}} = \frac{1}{32 a^{15} b^{20}} \times \frac{64}{a^{3} b^{-2}}. \] Next, simplify this: \[ = \frac{64}{32} \times \frac{1}{a^{15}} \times a^{3} \times \frac{1}{b^{20}} \times b^{2} = 2 \times a^{3 - 15} \times b^{2 - 20}. \] This simplifies to: \[ 2 a^{-12} b^{-18}. \] Finally, if we prefer to express negative exponents as positive, we can write: \[ \frac{2}{a^{12} b^{18}}. \] So the final answer is: \[ \frac{2}{a^{12} b^{18}}. \]