\( x ^ { \frac { 4 } { 3 } } - \sqrt[ 3 ] { x ^ { 2 } } - 72 = 0 \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To solve the equation \( x^{\frac{4}{3}} - \sqrt[3]{x^2} - 72 = 0 \), let's first make a substitution to simplify the expression. Let \( y = \sqrt[3]{x} \). Then, we can rewrite the equation as: \( y^{4} - y^{2} - 72 = 0 \). This is a quadratic in terms of \( y^{2} \). Let \( z = y^{2} \), transforming the equation into: \( z^{2} - z - 72 = 0 \). Now, we apply the quadratic formula: \[ z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1 + 4 \cdot 72}}{2} = \frac{1 \pm \sqrt{289}}{2} = \frac{1 \pm 17}{2}. \] This results in \( z = 9 \) or \( z = -8 \). Since \( z = y^{2} \), it must be non-negative, so we discard \( z = -8 \) and take \( z = 9 \). Now, we have: \[ y^{2} = 9 \implies y = 3 \text{ or } y = -3. \] Recalling our substitution \( y = \sqrt[3]{x} \): 1. \( \sqrt[3]{x} = 3 \implies x = 27 \). 2. \( \sqrt[3]{x} = -3 \implies x = -27 \). Thus, the solutions to the original equation are: \[ \boxed{27 \text{ and } -27}. \]