Question
upstudy study bank question image url

Which of the following refrigerants has the lowest global warming potential? (A) A) R-134a (B) B) R-600a (C) Q)R-410A (D) D) R-407C

Ask by Hodgson Harrington. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The refrigerant with the lowest Global Warming Potential is **R-600a**.

Solution

The refrigerant with the **lowest** Global Warming Potential (GWP) among the options provided is: **(B) R-600a** Here's a brief overview of each refrigerant's GWP: - **R-134a**: GWP of approximately **1,430**. - **R-600a** (Isobutane): GWP of around **3**. - **R-410A**: GWP of approximately **2,088**. - **R-407C**: GWP of approximately **1,774**. **R-600a** is not only efficient but also has a minimal impact on global warming, making it a more environmentally friendly choice compared to the other listed refrigerants. **Answer:** **B) R-600a**

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

R-600a, also known as isobutane, has the lowest global warming potential of the refrigerants listed. Unlike many synthetic refrigerants, R-600a is a natural hydrocarbon that boasts a much lower GWP and is more environmentally friendly, making it a preferred choice for eco-conscious refrigeration applications. When considering refrigerant choices, it's crucial to look beyond just the GWP. Real-world application also involves safety measures, as some refrigerants, like R-600a, are flammable. Proper leak detection and ventilation can help mitigate risks, ensuring a safe and efficient refrigeration system while benefiting the environment.

Related Questions

Latest Other Questions

Using the ESRT to find the Relative Humidity - Relative Humidity is the extent to which air is saturated with water vapor. - Relative humidity is the ratio of the amount of water vapor in the air to the maximum amount of water vapor that can be present could be present in the air at that temperature. - Relative Humidity is expressed as a percent (\%). - Evaporation is a cooling process. - Therefore, the wet-bulb temperature is always lower than the dry-bulb temperature EXCEPT when relative humidity is \( 100 \% \). Then the wet-bulb temperature is equal to the dry-bulb temperature. Practice Problems: 1. Dry-bulb Temperature: \( \mathbf{2 0}^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 7^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 2. Dry-bulb Temperature: \( 8^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 5^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 3. Dry-bulb Temperature: \( \mathbf{2 4}^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( \mathbf{2 2}^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 4. Dry-bulb Temperature: \( \mathbf{2 0}^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 7^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 5. Dry-bulb Temperature: \( 10^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 1^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 6. Dry-bulb Temperature: \( 6^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 5^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 7. Dry-bulb Temperature: \( 30^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 23^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Let's try some more complex examples... 8. Dry-bulb Temperature: \( -14^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( -15^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 9. Dry-bulb Temperature: \( -2^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( \qquad \) \( { }^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: 58 \% 10. Dry-bulb Temperature: \( -8^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( \qquad \) \( { }^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: 41 \%
Other United States Feb 04, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy