Question
upstudy study bank question image url

Simplify \( \frac{3^{x+3} \cdot 18^{x}}{6^{x+1} \cdot 9^{x+1}} \)

Ask by Flynn Mejia. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The simplified form of the expression is \( \frac{1}{2} \) or 0.5.

Solution

Calculate or simplify the expression \( (3^(x+3) * 18^x) / (6^(x+1) * 9^(x+1)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(3^{x+3}\times 18^{x}\right)}{\left(6^{x+1}\times 9^{x+1}\right)}\) - step1: Remove the parentheses: \(\frac{3^{x+3}\times 18^{x}}{6^{x+1}\times 9^{x+1}}\) - step2: Factor the expression: \(\frac{3^{x+3}\times 18^{x}}{3^{x+1}\times 2^{x+1}\times 9^{x+1}}\) - step3: Reduce the fraction: \(\frac{3^{2}\times 18^{x}}{2^{x+1}\times 9^{x+1}}\) - step4: Factor the expression: \(\frac{3^{2}\times 18^{x}}{2^{x+1}\times 3^{2}\times 9^{x}}\) - step5: Reduce the fraction: \(\frac{18^{x}}{2^{x+1}\times 9^{x}}\) - step6: Factor the expression: \(\frac{2^{x}\times 9^{x}}{2^{x+1}\times 9^{x}}\) - step7: Reduce the fraction: \(\frac{1}{2}\) The simplified form of the expression \( \frac{3^{x+3} \cdot 18^{x}}{6^{x+1} \cdot 9^{x+1}} \) is \( \frac{1}{2} \) or 0.5.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To simplify the expression \( \frac{3^{x+3} \cdot 18^{x}}{6^{x+1} \cdot 9^{x+1}} \), we first need to express all terms in bases of 3 and 2: 1. Rewrite the bases: \[ 18 = 2 \cdot 3^2 \quad \Rightarrow \quad 18^x = 2^x \cdot 3^{2x} \] \[ 6 = 2 \cdot 3 \quad \Rightarrow \quad 6^{x+1} = 2^{x+1} \cdot 3^{x+1} \] \[ 9 = 3^2 \quad \Rightarrow \quad 9^{x+1} = 3^{2(x+1)} = 3^{2x+2} \] 2. Substitute these values back into the original expression: \[ = \frac{3^{x+3} \cdot (2^x \cdot 3^{2x})}{(2^{x+1} \cdot 3^{x+1}) \cdot (3^{2x+2})} \] \[ = \frac{3^{x+3} \cdot 2^x \cdot 3^{2x}}{2^{x+1} \cdot 3^{x+1} \cdot 3^{2x+2}} \] \[ = \frac{3^{x+3 + 2x} \cdot 2^x}{2^{x+1} \cdot 3^{(x+1) + (2x+2)}} \] 3. Combine the exponents: \[ = \frac{3^{3x + 3} \cdot 2^x}{2^{x+1} \cdot 3^{3x + 3}} \] 4. Now, cancel \( 3^{3x + 3} \): \[ = \frac{2^x}{2^{x+1}} \] 5. Simplify the powers of 2: \[ = \frac{1}{2^{x+1 - x}} = \frac{1}{2^1} = \frac{1}{2} \] Thus, the simplified expression is: \[ \frac{1}{2} \]

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy